TP7: Bayesian logistic regression for churn prediction
\n",
"\n",
"
Author: Hicham Janati
\n",
"* * *\n",
"\n",
"\n",
"**Objectives:**\n",
"\n",
"- Apply a **Bayesian model** to perform **binary prediction**\n",
"- Understand how **Bayesian modeling helps avoid underfitting and overfitting**\n",
"- Compare **Bayesian and frequentist approaches**\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 245,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"import pymc as pm\n",
"import arviz as az\n",
"\n",
"seed = 42\n",
"rng = np.random.default_rng(seed)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Problem Statement\n",
"\n",
"In companies that offer services (such as a mobile phone operator), **customer retention** is a major challenge. The **churn rate** refers to the percentage of customers who decide to cancel their subscription (e.g., to switch to another provider). If the company can **predict which customers are likely to churn**, it can take proactive steps — such as offering additional services or special deals — to retain them.\n",
"\n",
"We will work with a **real dataset** from a telecom operator (filtered and adapted from: [Kaggle](https://www.kaggle.com/datasets/kapturovalexander/customers-churned-in-telecom-services/data)).\n"
]
},
{
"cell_type": "code",
"execution_count": 246,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Dependents
\n",
"
TechSupport
\n",
"
Contract
\n",
"
InternetService
\n",
"
CustomerID_Region
\n",
"
MonthlyCharges
\n",
"
Months
\n",
"
Churn
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
Yes
\n",
"
No
\n",
"
One year
\n",
"
Fiber optic
\n",
"
MIS-1
\n",
"
78.95
\n",
"
34.0
\n",
"
0
\n",
"
\n",
"
\n",
"
1
\n",
"
Yes
\n",
"
Yes
\n",
"
Two year
\n",
"
DSL
\n",
"
DAL-1
\n",
"
85.95
\n",
"
70.0
\n",
"
0
\n",
"
\n",
"
\n",
"
2
\n",
"
No
\n",
"
Yes
\n",
"
Two year
\n",
"
Fiber optic
\n",
"
SAN-1
\n",
"
104.00
\n",
"
69.0
\n",
"
0
\n",
"
\n",
"
\n",
"
3
\n",
"
No
\n",
"
No internet service
\n",
"
Month-to-month
\n",
"
No
\n",
"
HOU-1
\n",
"
20.55
\n",
"
5.0
\n",
"
0
\n",
"
\n",
"
\n",
"
4
\n",
"
Yes
\n",
"
Yes
\n",
"
Two year
\n",
"
Fiber optic
\n",
"
HOU-1
\n",
"
113.10
\n",
"
72.0
\n",
"
0
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Dependents TechSupport Contract InternetService \\\n",
"0 Yes No One year Fiber optic \n",
"1 Yes Yes Two year DSL \n",
"2 No Yes Two year Fiber optic \n",
"3 No No internet service Month-to-month No \n",
"4 Yes Yes Two year Fiber optic \n",
"\n",
" CustomerID_Region MonthlyCharges Months Churn \n",
"0 MIS-1 78.95 34.0 0 \n",
"1 DAL-1 85.95 70.0 0 \n",
"2 SAN-1 104.00 69.0 0 \n",
"3 HOU-1 20.55 5.0 0 \n",
"4 HOU-1 113.10 72.0 0 "
]
},
"execution_count": 246,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.read_csv(\"http://hichamjanati.github.io/data/churn.csv\", index_col=0)\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 247,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['Dependents', 'TechSupport', 'Contract', 'InternetService',\n",
" 'CustomerID_Region', 'MonthlyCharges', 'Months', 'Churn'],\n",
" dtype='object')"
]
},
"execution_count": 247,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.columns"
]
},
{
"cell_type": "code",
"execution_count": 248,
"metadata": {},
"outputs": [],
"source": [
"# get the X and y variables\n",
"y = df.Churn\n",
"X = df.drop(\"Churn\", axis=1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Check if the number of class instances we have:"
]
},
{
"cell_type": "code",
"execution_count": 249,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Churn\n",
"0 100\n",
"1 100\n",
"Name: count, dtype: int64"
]
},
"execution_count": 249,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y.value_counts()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This binary classification task is balanced: (in practice churn rates are significantly lower, churn prediction is very imbalanced in the real world. I made the problem easier here by resampling from the original data for the sake of simplicity). Let's check the type of data variables we have:"
]
},
{
"cell_type": "code",
"execution_count": 250,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Dependents object\n",
"TechSupport object\n",
"Contract object\n",
"InternetService object\n",
"CustomerID_Region object\n",
"MonthlyCharges float64\n",
"Months float64\n",
"dtype: object"
]
},
"execution_count": 250,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 251,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Contract\n",
"Month-to-month 133\n",
"One year 37\n",
"Two year 30\n",
"Name: count, dtype: int64"
]
},
"execution_count": 251,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X.Contract.value_counts()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Data preprocessing\n",
"### 2.1 One-hot encoding / dummy variables\n",
"We need to pre-process the data: turn the categorical variables to binary dummy variables. This is called _one-hot encoding_. Here is how it goes:\n",
"- for a variable like _Contract_ which takes _Month-to-Month_, _One year_ or _Two year_ (three categories) we can transform it to a 3 binary variables: \n",
"\n",
"| ... | Contract | ... |\n",
"|-----|--------------|-----|\n",
"| ... | Month-to-Month | ... |\n",
"| ... | One Year | ... |\n",
"| ... | Two Year | ... |\n",
"| ... | Month-to-Month | ... |\n",
"| ... | Two Year | ... |\n",
"| ... | Two Year | ... |\n",
"\n",
"↓\n",
"\n",
"| ... | Month-to-Month | One Year | Two Year | ... |\n",
"|-----|----------------|-----------|-----------|-----| \n",
"| ... | 1 | 0 | 0 | ... |\n",
"| ... | 0 | 1 | 0 | ... |\n",
"| ... | 0 | 0 | 1 | ... |\n",
"| ... | 1 | 0 | 0 | ... |\n",
"| ... | 0 | 0 | 1 | ... |\n",
"| ... | 0 | 0 | 1 | ... |\n",
"\n",
"These binary variables are called _dummy variables_ or the one-hot encoding of _Contract_.\n",
"However you can notice that the sum of these columns will always be 1: the 3 binary variables are linearly dependent which is bad for linear models (particularly if no regularization is used), this is called a _dummy variables trap_. We should drop one of the columns to avoid it. Thus, a categorical variable with K categories is transformed into K-1 binary variables. We can do this with sklearn _transformer_ object called _OneHotEncoder_:\n"
]
},
{
"cell_type": "code",
"execution_count": 252,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<200x2 sparse matrix of type ''\n",
"\twith 67 stored elements in Compressed Sparse Row format>"
]
},
"execution_count": 252,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sklearn.preprocessing import OneHotEncoder\n",
"\n",
"encoder = OneHotEncoder(drop='first')\n",
"encoded_data = encoder.fit_transform(df[[\"Contract\"]])\n",
"encoded_data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The output is a sparse matrix (CSR) which is a compressed form of storing matrices with lots of zeros: instead of storing all their entries, we only store in memory necessary information (for e.g the triplets (i, j, v) such that M[i, j] = v and v is not zero). Here the data is small, no need to used sparse matrices: "
]
},
{
"cell_type": "code",
"execution_count": 253,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[1., 0.],\n",
" [0., 1.],\n",
" [0., 1.],\n",
" [0., 0.],\n",
" [0., 1.],\n",
" [0., 0.],\n",
" [1., 0.],\n",
" [1., 0.],\n",
" [0., 0.],\n",
" [0., 0.]])"
]
},
"execution_count": 253,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"encoder = OneHotEncoder(drop='first', sparse_output=False)\n",
"encoded_data = encoder.fit_transform(X[[\"Contract\"]])\n",
"encoded_data[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can apply this to all categorical variables: "
]
},
{
"cell_type": "code",
"execution_count": 254,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[1., 0., 0., 1., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.,\n",
" 0., 0.],\n",
" [1., 0., 1., 0., 1., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.,\n",
" 0., 0.],\n",
" [0., 0., 1., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n",
" 1., 0.],\n",
" [0., 1., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 0.,\n",
" 0., 0.],\n",
" [1., 0., 1., 0., 1., 1., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.,\n",
" 0., 0.],\n",
" [0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,\n",
" 0., 0.],\n",
" [0., 0., 0., 1., 0., 1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,\n",
" 0., 0.],\n",
" [1., 0., 0., 1., 0., 1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,\n",
" 0., 0.],\n",
" [0., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,\n",
" 0., 0.],\n",
" [0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n",
" 0., 0.]])"
]
},
"execution_count": 254,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"encoder = OneHotEncoder(drop='first', sparse_output=False)\n",
"categorical_features = [\"Dependents\", \"TechSupport\", \"Contract\", \"InternetService\", \"CustomerID_Region\"]\n",
"encoded_data = encoder.fit_transform(X[categorical_features])\n",
"encoded_data[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"But later we will have a regression coefficient for each one of these columns, how do we know which one belongs to which ?\n",
"Well we can get their names from the encoder:"
]
},
{
"cell_type": "code",
"execution_count": 255,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array(['Dependents_Yes', 'TechSupport_No internet service',\n",
" 'TechSupport_Yes', 'Contract_One year', 'Contract_Two year',\n",
" 'InternetService_Fiber optic', 'InternetService_No',\n",
" 'CustomerID_Region_CHI-1', 'CustomerID_Region_DAL-1',\n",
" 'CustomerID_Region_HOU-1', 'CustomerID_Region_LAX-1',\n",
" 'CustomerID_Region_MIA-1', 'CustomerID_Region_MIS-1',\n",
" 'CustomerID_Region_NYC-1', 'CustomerID_Region_PHL-1',\n",
" 'CustomerID_Region_PHX-1', 'CustomerID_Region_SAN-1',\n",
" 'CustomerID_Region_SEA-1'], dtype=object)"
]
},
"execution_count": 255,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"encoder.get_feature_names_out(categorical_features)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.2 Scaling numerical features\n",
"We also have continuous variables (numerical features): _Months_ and _MonthlyCharges_. As explained in the last class, it's important for them to have the same scale (order of magnitude) in a linear model. Scaling a variable means centering it and dividing by its standard deviation:"
]
},
{
"cell_type": "code",
"execution_count": 256,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 0.326288\n",
"1 1.850800\n",
"2 1.808453\n",
"3 -0.901791\n",
"4 1.935495\n",
"Name: Months, dtype: float64"
]
},
"execution_count": 256,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"variable = X[\"Months\"]\n",
"variable = variable - variable.mean()\n",
"variable = variable / variable.std()\n",
"variable.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It is tedious to do this for each variable, the best way to do it is to use a sklearn _transformer_ called _StandardScaler_:"
]
},
{
"cell_type": "code",
"execution_count": 257,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 0.37846895, 0.32710679],\n",
" [ 0.63721955, 1.85544479],\n",
" [ 1.30442645, 1.81299095],\n",
" [-1.78025031, -0.90405438],\n",
" [ 1.64080222, 1.94035245],\n",
" [ 0.56698725, -1.03141588],\n",
" [ 1.37835519, 0.58182979],\n",
" [ 1.04937229, 0.66673745],\n",
" [ 0.19734354, -0.77669288],\n",
" [ 0.79062169, -0.73423905]])"
]
},
"execution_count": 257,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sklearn.preprocessing import StandardScaler\n",
"\n",
"scaler = StandardScaler()\n",
"numeric_features = [\"MonthlyCharges\", \"Months\"]\n",
"scaled_data = scaler.fit_transform(X[numeric_features])\n",
"scaled_data[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.3 Merging both in one transformer:\n",
"We can handle both categorical and numerical features in one _ColumnTransformer_ object:"
]
},
{
"cell_type": "code",
"execution_count": 258,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The shape of the transformed data is (200, 20)\n"
]
},
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
cat__Dependents_Yes
\n",
"
cat__TechSupport_No internet service
\n",
"
cat__TechSupport_Yes
\n",
"
cat__Contract_One year
\n",
"
cat__Contract_Two year
\n",
"
cat__InternetService_Fiber optic
\n",
"
cat__InternetService_No
\n",
"
cat__CustomerID_Region_CHI-1
\n",
"
cat__CustomerID_Region_DAL-1
\n",
"
cat__CustomerID_Region_HOU-1
\n",
"
cat__CustomerID_Region_LAX-1
\n",
"
cat__CustomerID_Region_MIA-1
\n",
"
cat__CustomerID_Region_MIS-1
\n",
"
cat__CustomerID_Region_NYC-1
\n",
"
cat__CustomerID_Region_PHL-1
\n",
"
cat__CustomerID_Region_PHX-1
\n",
"
cat__CustomerID_Region_SAN-1
\n",
"
cat__CustomerID_Region_SEA-1
\n",
"
num__MonthlyCharges
\n",
"
num__Months
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
1.0
\n",
"
0.0
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.378469
\n",
"
0.327107
\n",
"
\n",
"
\n",
"
1
\n",
"
1.0
\n",
"
0.0
\n",
"
1.0
\n",
"
0.0
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.637220
\n",
"
1.855445
\n",
"
\n",
"
\n",
"
2
\n",
"
0.0
\n",
"
0.0
\n",
"
1.0
\n",
"
0.0
\n",
"
1.0
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
1.0
\n",
"
0.0
\n",
"
1.304426
\n",
"
1.812991
\n",
"
\n",
"
\n",
"
3
\n",
"
0.0
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
-1.780250
\n",
"
-0.904054
\n",
"
\n",
"
\n",
"
4
\n",
"
1.0
\n",
"
0.0
\n",
"
1.0
\n",
"
0.0
\n",
"
1.0
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
1.640802
\n",
"
1.940352
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" cat__Dependents_Yes cat__TechSupport_No internet service \\\n",
"0 1.0 0.0 \n",
"1 1.0 0.0 \n",
"2 0.0 0.0 \n",
"3 0.0 1.0 \n",
"4 1.0 0.0 \n",
"\n",
" cat__TechSupport_Yes cat__Contract_One year cat__Contract_Two year \\\n",
"0 0.0 1.0 0.0 \n",
"1 1.0 0.0 1.0 \n",
"2 1.0 0.0 1.0 \n",
"3 0.0 0.0 0.0 \n",
"4 1.0 0.0 1.0 \n",
"\n",
" cat__InternetService_Fiber optic cat__InternetService_No \\\n",
"0 1.0 0.0 \n",
"1 0.0 0.0 \n",
"2 1.0 0.0 \n",
"3 0.0 1.0 \n",
"4 1.0 0.0 \n",
"\n",
" cat__CustomerID_Region_CHI-1 cat__CustomerID_Region_DAL-1 \\\n",
"0 0.0 0.0 \n",
"1 0.0 1.0 \n",
"2 0.0 0.0 \n",
"3 0.0 0.0 \n",
"4 0.0 0.0 \n",
"\n",
" cat__CustomerID_Region_HOU-1 cat__CustomerID_Region_LAX-1 \\\n",
"0 0.0 0.0 \n",
"1 0.0 0.0 \n",
"2 0.0 0.0 \n",
"3 1.0 0.0 \n",
"4 1.0 0.0 \n",
"\n",
" cat__CustomerID_Region_MIA-1 cat__CustomerID_Region_MIS-1 \\\n",
"0 0.0 1.0 \n",
"1 0.0 0.0 \n",
"2 0.0 0.0 \n",
"3 0.0 0.0 \n",
"4 0.0 0.0 \n",
"\n",
" cat__CustomerID_Region_NYC-1 cat__CustomerID_Region_PHL-1 \\\n",
"0 0.0 0.0 \n",
"1 0.0 0.0 \n",
"2 0.0 0.0 \n",
"3 0.0 0.0 \n",
"4 0.0 0.0 \n",
"\n",
" cat__CustomerID_Region_PHX-1 cat__CustomerID_Region_SAN-1 \\\n",
"0 0.0 0.0 \n",
"1 0.0 0.0 \n",
"2 0.0 1.0 \n",
"3 0.0 0.0 \n",
"4 0.0 0.0 \n",
"\n",
" cat__CustomerID_Region_SEA-1 num__MonthlyCharges num__Months \n",
"0 0.0 0.378469 0.327107 \n",
"1 0.0 0.637220 1.855445 \n",
"2 0.0 1.304426 1.812991 \n",
"3 0.0 -1.780250 -0.904054 \n",
"4 0.0 1.640802 1.940352 "
]
},
"execution_count": 258,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sklearn.compose import ColumnTransformer\n",
"from sklearn.pipeline import Pipeline\n",
"\n",
"categorical_features = [\"Dependents\", \"TechSupport\", \"Contract\", \"InternetService\", \"CustomerID_Region\"]\n",
"numeric_features = [\"MonthlyCharges\", \"Months\"]\n",
"\n",
"categorical_transformer = OneHotEncoder(drop=\"first\", sparse_output=False)\n",
"numeric_transformer = StandardScaler()\n",
"\n",
"preprocessor = ColumnTransformer(\n",
" transformers=[\n",
" ('cat', categorical_transformer, categorical_features),\n",
" ('num', numeric_transformer, numeric_features),\n",
" ],\n",
")\n",
"\n",
"transformed_data = preprocessor.fit_transform(X)\n",
"print(f\"The shape of the transformed data is {transformed_data.shape}\")\n",
"\n",
"# we construct a new pandas with the column names:\n",
"column_names = preprocessor.get_feature_names_out()\n",
"transformed_df = pd.DataFrame(transformed_data, columns=column_names)\n",
"transformed_df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.4 Preprocessing and the train-test split\n",
"But when developing a machine learing model, we always follow the train-test paradigm where we split train-test data: therefore when transforming / encoding / scaling the variables we should only be using the train data. Otherwise info from the test data will be used by the model: for example, the scaling operation will use test samples to compute the mean and std. Therefore, the column transformer object should be _fit_ on the train only, then we use the _transform_ method on the test data:"
]
},
{
"cell_type": "code",
"execution_count": 259,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.model_selection import train_test_split\n",
"\n",
"categorical_features = [\"Dependents\", \"TechSupport\", \"Contract\", \"InternetService\", \"CustomerID_Region\"]\n",
"numeric_features = [\"MonthlyCharges\", \"Months\"]\n",
"\n",
"categorical_transformer = OneHotEncoder(drop=\"first\", sparse_output=False)\n",
"numeric_transformer = StandardScaler()\n",
"\n",
"preprocessor = ColumnTransformer(\n",
" transformers=[\n",
" ('cat', categorical_transformer, categorical_features),\n",
" ('num', numeric_transformer, numeric_features),\n",
" ],\n",
")\n",
"\n",
"X_train, X_test, y_train, y_test = train_test_split(df, y, test_size=0.3, random_state=42, stratify=y)\n",
"\n",
"X_train_processed = preprocessor.fit_transform(X_train)\n",
"\n",
"X_test_processed = preprocessor.transform(X_test)\n",
"\n",
"# we get the column names:\n",
"column_names = preprocessor.get_feature_names_out()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3. Logistic regression \n",
"We can now start doing ML models. First, we use logistic regression without regularization:\n",
"\n",
"#### 3.1 Without regularization"
]
},
{
"cell_type": "code",
"execution_count": 260,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Training accuracy: 0.8357\n",
"Test accuracy: 0.6500\n"
]
}
],
"source": [
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.metrics import accuracy_score\n",
"\n",
"# we can fit the logistic regression model with no regularization:\n",
"model = LogisticRegression(penalty=None)\n",
"model.fit(X_train_processed, y_train.values)\n",
"\n",
"y_train_pred = model.predict(X_train_processed)\n",
"y_test_pred = model.predict(X_test_processed)\n",
"\n",
"# Evaluate the model accuracy\n",
"print(f\"Training accuracy: {accuracy_score(y_train_pred, y_train):.4f}\")\n",
"print(f\"Test accuracy: {accuracy_score(y_test_pred, y_test):.4f}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can see that the model isn't quite good:\n",
"1. 83% accuracy on the training data means that the model isnt complex enough to predict labels it has already seen\n",
"2. 65% accuracy on the test data suggest a big difference between train and test: the models learns a bit of noise in the training data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can extract the coefficients and visualize their values:"
]
},
{
"cell_type": "code",
"execution_count": 261,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAKUCAYAAAA5J1NCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACzK0lEQVR4nOzdd1gU1/c/8Pcu0rtdEUXsWEGjsfeCJmrsLRY0icbeNTbsaOyajxobEoM12KJiFxU1sQTsUhTR2BsKKvX8/uC3+2VdQNhp7Oa8nmcf3Znlnpm9s7Nn79y5V0VEBMYYY4wxBaiV3gDGGGOM/XdxIsIYY4wxxXAiwhhjjDHFcCLCGGOMMcVwIsIYY4wxxXAiwhhjjDHFcCLCGGOMMcVwIsIYY4wxxeRTegOyk5aWhkePHsHe3h4qlUrpzWGMMcZYDhAR3r17h+LFi0Otzr7NI08nIo8ePYKrq6vSm8EYY4wxAzx48AAlSpTI9jV5OhGxt7cHkL4jDg4OOfqb5ORkHDlyBK1atYK5ubno2yR1+Rwjb8UwhX3gGHmnfI6Rt2KYwj7k1Rhv376Fq6ur9ns8O3k6EdFcjnFwcMhVImJjYwMHBwfJDlwpy+cYeSuGKewDx8g75XOMvBXDFPYhr8fISbcK7qzKGGOMMcVwIsIYY4wxxXAiwhhjjDHFcCLCGGOMMcVwIsIYY4wxxXAiwhhjjDHFcCLCGGOMMcVwIsIYY4wxxUiaiKxevRrVqlXTDkhWt25dHDp0SMqQjDHGGDMikiYiJUqUgJ+fHy5fvoxLly6hWbNm6NChA27cuCFlWMYYY4wZCUmHeP/66691ns+dOxerV6/GhQsXULlyZSlDM8YYY8wIyDbXTGpqKnbu3ImEhATUrVs309ckJiYiMTFR+/zt27cA0se4T05OzlEczety+vrckrp8jpG3YpjCPnCMvFM+x8hbMUxhH/JqjNxsi4qIyKCtyqFr166hbt26+PjxI+zs7BAYGIi2bdtm+lpfX1/MnDlTb3lgYCBsbGyk3EzGGGOMieT9+/fo1asX4uLiPjtpreSJSFJSEmJjYxEXF4ddu3Zh/fr1CAkJgYeHh95rM2sRcXV1xYsXL3I1++7Ro0fRsmVLyWZrlLJ8jpG3YpjCPnCMvFM+x8hbMUxhH/JqjLdv36JgwYI5SkQkvzRjYWGBsmXLAgBq1qyJixcvYvny5Vi7dq3eay0tLWFpaam33NzcPNdvriF/k5fK5xi63CYdyHS5pRlhYW3Ac+4JJKbqTjcd49dOUMyMjOV94hjGUT7HyFsxTGEf8lqM3GyH7OOIpKWl6bR6MMYYY+y/S9IWkcmTJ8Pb2xslS5bEu3fvEBgYiFOnTuHw4cNShmWMMcaYkZA0EXn27Bn69u2Lx48fw9HREdWqVcPhw4fRsmVLKcMyxhhjzEhImohs2LBByuIZY4wxZuR4rhnGGGOMKYYTEcYYY4wphhMRxhhjjCmGExHGGGOMKYYTEcYYY4wphhMRxhhjjCmGExHGGGOMKYYTEcYYY4wphhMRxhhjjCmGExHGGGOMKYYTEcYYY4wphhMRxhhjjCmGExHGGGOMKYYTEcYYY4wphhMRxhhjjCmGExHGGGOMKYYTEcYYY4wphhMRxhhjjCmGExHGGGOMKYYTEcYYY4wphhMRxhhjjCmGExHGGGOMKYYTEcYYY4wphhMRxhhjjCmGExHGGGOMKYYTEcYYY4wphhMRxhhjjCmGExHGGGOMKYYTEcYYY4wphhMRxhhjjCmGExHGGGOMKYYTEcYYY4wphhMRxhhjjCmGExHGGGOMKYYTEcYYY4wphhMRxhhjjCmGExHGGGOMKYYTEcYYY4wphhMRxhhjjCmGExHGGGOMKYYTEcYYY4wphhMRxhhjjCmGExHGGGOMKYYTEcYYY4wphhMRxhhjjCmGExHGGGOMKYYTEcYYY4wphhMRxhhjjCkmn9IbwBhjjJkCt0kH9JZZmhEW1gaq+B5GYqpKZ12MXzu5Ni1P4xYRxhhjjCmGExHGGGOMKYYTEcYYY4wphhMRxhhjjCmGExHGGGOMKYYTEcYYY4wphhMRxhhjjCmGExHGGGOMKYYTEcYYY4wphhMRxhhjjCmGExHGGGOMKYYTEcYYY4wphhMRxhhjjCmGExHGGGOMKYYTEcYYY4wpRtJEZP78+fjiiy9gb2+PwoULo2PHjrhz546UIRljjDFmRCRNREJCQjB06FBcuHABR48eRXJyMlq1aoWEhAQpwzLGGGPMSOSTsvDg4GCd5/7+/ihcuDAuX76MRo0aSRmaMcYYY0ZA1j4icXFxAID8+fPLGZYxxhhjeZSkLSIZpaWlYdSoUahfvz6qVKmS6WsSExORmJioff727VsAQHJyMpKTk3MUR/O6nL4+t6Qun2NkztKMMl+uJp1/M4svhLG9Txwjb5fPMfJWDLHLz+w8JfU5KmM5eakucrMtKiLK/AwvsiFDhuDQoUM4e/YsSpQokelrfH19MXPmTL3lgYGBsLGxkXoTGWOMMSaC9+/fo1evXoiLi4ODg0O2r5UlERk2bBj27t2L06dPo3Tp0lm+LrMWEVdXV7x48eKzO6KRnJyMo0ePomXLljA3Nxe87XKXzzEyV8X3cKbLLdWE2bXSMO2SGolpKp11131bC4oJGN/7xDHydvkcI2/FELv8zM5TUp+jgLxZF2/fvkXBggVzlIhIemmGiDB8+HDs3r0bp06dyjYJAQBLS0tYWlrqLTc3N8/1m2vI3+Sl8jmGrsRUVfbr01R6rxFzv4zlfeIYxlE+x8hbMcQqP7vzlNTnKE15eaUucrMdkiYiQ4cORWBgIPbu3Qt7e3s8efIEAODo6Ahra2spQzPGGGPMCEh618zq1asRFxeHJk2aoFixYtrH9u3bpQzLGGOMMSMh+aUZxhhjjLGs8FwzjDHGGFMMJyKMMcYYUwwnIowxxhhTDCcijDHGGFMMJyKMMcYYUwwnIowxxhhTDCcijDHGGFMMJyKMMcYYUwwnIowxxhhTDCcijDHGGFMMJyKMMcYYUwwnIowxxhhTDCcijDHGGFMMJyKMMcYYUwwnIowxxhhTDCcijDHGGFMMJyKMMcYYUwwnIowxxhhTDCcijDHGGFMMJyKMMcYYUwwnIowxxhhTDCcijDHGGFMMJyKMMcYYUwwnIowxxhhTDCcijDHGGFMMJyKMMcYYUwwnIowxxhhTDCcijDHGGFMMJyKMMcYYUwwnIowxxhhTDCcijDHGGFMMJyKMMcYYUwwnIowxxhhTDCcijDHGGFMMJyKMMcYYUwwnIowxxhhTDCcijDHGGFMMJyKMMcYYUwwnIowxxhhTDCcijDHGGFMMJyKMMcYYUwwnIowxxhhTDCcijDHGGFMMJyKMMcYYUwwnIowxxhhTDCcijDHGGFMMJyKMMcYYUwwnIowxxhhTDCcijDHGGFMMJyKMMcYYUwwnIowxxhhTDCcijDHGGFMMJyKMMcYYUwwnIowxxhhTDCcijDHGGFMMJyKMMcYYUwwnIowxxhhTDCcijDHGGFMMJyKMMcYYUwwnIowxxhhTDCcijDHGGFMMJyKMMcYYUwwnIowxxhhTDCcijDHGGFNMPqU3gDHG2H+b26QDmS63NCMsrA1U8T2MxFSVzroYv3ZybBqTgaQtIqdPn8bXX3+N4sWLQ6VSYc+ePVKGY4wxxpiRkbRFJCEhAdWrV4ePjw86deokatmcQTPGGGPGT9JExNvbG97e3lKGYIwxxpgRy1N9RBITE5GYmKh9/vbtWwBAcnIykpOTdV5raUaZlmGpJp1/M/q0DENoyhCjLI6Rc1zfHEOOGKawD8YYw1Q+35nth9T7kLGcvFTfudkWFRFlfgSITKVSYffu3ejYsWOWr/H19cXMmTP1lgcGBsLGxkbCrWOMMcaYWN6/f49evXohLi4ODg4O2b42TyUimbWIuLq64sWLF3o7UsX3cKZlWKoJs2ulYdolNRLTdPuIXPdtbfgO/H/Jyck4evQoWrZsCXNzc8HlcYyc4frmGHLEMIV9MMYYpvL5zmw/pN4HIG/W99u3b1GwYMEcJSJ56tKMpaUlLC0t9Zabm5vr7finHVE/lZim0nuNmBWU2TaJjWP8H65vjiFnDFPYB2OKYSqf7+z2Q+p90JSXV+o7N9vBA5oxxhhjTDGStojEx8cjKipK+/zevXsICwtD/vz5UbJkSSlDM8YYY8wISJqIXLp0CU2bNtU+HzNmDACgX79+8Pf3lzI0Y4wxxoyApIlIkyZNIFNfWMYYY4wZIe4jwhhjjDHFcCLCGGOMMcVwIsIYY4wxxXAiwhhjjDHFcCLCGGOMMcVwIsIYY4wxxXAiwhhjjDHFcCLCGGOMMcVwIsIYY4wxxXAiwhhjjDHFcCLCGGOMMcVwIsIYY4wxxXAiwhhjjDHFcCLCGGOMMcVwIsIYY4wxxXAiwhhjjDHFcCLCGGOMMcVwIsIYY4wxxXAiwhhjjDHFcCLCGGOMMcVwIsIYY4wxxeRTegMYY+xTbpMOZLrc0oywsDZQxfcwElNVOuti/NrJsWmMMZFxiwhjjDHGFMOJCGOMMcYUw4kIY4wxxhTDiQhjjDHGFMOJCGOMMcYUw4kIY4wxxhTDiQhjjDHGFMOJCGOMMcYUw4kIY4wxxhTDiQhjjDHGFMOJCGOMMcYUw4kIY4wxxhTDiQhjjDHGFMOJCGOMMcYUw4kIY4wxxhTDiQhjjDHGFMOJCGOMMcYUw4kIY4wxxhTDiQhjjDHGFMOJCGOMMcYUw4kIY4wxxhTDiQhjjDHGFMOJCGOMMcYUw4kIY4wxxhTDiQhjjDHGFMOJCGOMMcYUw4kIY4wxxhTDiQhjjDHGFMOJCGOMMcYUw4kIY4wxxhTDiQhjjDHGFMOJCGOMMcYUw4kIY4wxxhTDiQhjjDHGFMOJCGOMMcYUw4kIY4wxxhTDiQhjjDHGFMOJCGOMMcYUw4kIY4wxxhSTT+kN+K9zm3RAb5mlGWFhbaCK72Ekpqp01sX4tZNr0xhjDACfp5i0uEWEMcYYY4rhRIQxxhhjipElEfnll1/g5uYGKysr1KlTB3///bccYRljjDGWx0meiGzfvh1jxozBjBkzcOXKFVSvXh2tW7fGs2fPpA7NGGOMsTxO8kRkyZIl+O677zBgwAB4eHhgzZo1sLGxwcaNG6UOzRhjjLE8TtK7ZpKSknD58mVMnjxZu0ytVqNFixY4f/683usTExORmJioff727VsAQHJyMpKTk3Vea2lGmca0VJPOvxl9WoYhNGWIURaQ+X5IvQ8ZyxGrPKljmEp9c4yc4frOWzGkPk+ZSn3z+Vz/9TmhIqLMjwARPHr0CC4uLjh37hzq1q2rXT5hwgSEhITgr7/+0nm9r68vZs6cqVdOYGAgbGxspNpMxhhjjIno/fv36NWrF+Li4uDg4JDta/PUOCKTJ0/GmDFjtM/fvn0LV1dXtGrV6rM7opGcnIyjR4+iZcuWMDc3F7Q9VXwP6y2zVBNm10rDtEtqJKap9NZf920tKCYg7j4Aud8PQ/ZBjhiZMbb6NpW64PqWJsZ/tS7kiMHnc3ljaK5o5ISkiUjBggVhZmaGp0+f6ix/+vQpihYtqvd6S0tLWFpa6i03NzfPdQUa8jef+nSQHp11aapM14v5gRRjH4Dc74chMeWIkR1jqW9TqQuub2li/FfrQo4YfD6XN0Zu4kraWdXCwgI1a9bE8ePHtcvS0tJw/PhxnUs1jDHGGPtvkvzSzJgxY9CvXz/UqlULtWvXxrJly5CQkIABAwZIHZoxxhhjeZzkiUj37t3x/PlzTJ8+HU+ePEGNGjUQHByMIkWKSB2aMcYYY3mcLJ1Vhw0bhmHDhskRijHGGGNGhOeaYYwxxphiOBFhjDHGmGI4EWGMMcaYYjgRYYwxxphiOBFhjDHGmGI4EWGMMcaYYjgRYYwxxphiOBFhjDHGmGI4EWGMMcaYYjgRYYwxxphiOBFhjDHGmGI4EWGMMcaYYjgRYYwxxphiOBFhjDHGmGI4EWGMMcaYYjgRYYwxxphiOBFhjDHGmGI4EWGMMcaYYvIpvQGMMeMT49dOb1lycjIOHjyI676tYW5ursBWMcaMEbeIMMYYY0wxnIgwxhhjTDGciDDGGGNMMZyIMMYYY0wxnIgwxhhjTDGciDDGGGNMMZyIMMYYY0wxnIgwxhhjTDGciDDGGGNMMZyIMMYYY0wxnIgwxhhjTDGciDDGGGNMMZyIMMYYY0wxnIgwxhhjTDGciDDGGGNMMZyIMMYYY0wx+ZTeAGYaYvza6S1LTk7GwYMHcd23NczNzRXYKsYYY3kdt4gwxhhjTDGciDDGGGNMMZyIMMYYY0wxnIgwxhhjTDGciDDGGGNMMZyIMMYYY0wxnIgwxhhjTDE8jghj7D+Jx75hLG/gRIQxxiTCyQ5jn8eXZhhjjDGmGE5EGGOMMaYYTkQYY4wxphhORBhjjDGmGE5EGGOMMaYYTkQYY4wxphhORBhjjDGmGE5EGGOMMaYYHtCMMcYYMxKmOEget4gwxhhjTDGciDDGGGNMMZyIMMYYY0wxnIgwxhhjTDHcWZUxGZliRzPGGBOCW0QYY4wxphhORBhjjDGmGE5EGGOMMaYYTkQYY4wxphhORBhjjDGmGE5EGGOMMaYYyRKRuXPnol69erCxsYGTk5NUYRhjjDFmxCRLRJKSktC1a1cMGTJEqhCMMcYYM3KSDWg2c+ZMAIC/v79UIRhjjDFm5PLUyKqJiYlITEzUPn/79i2A9JEnk5OTc1SG5nU5fX12LM1If5madP7NKr4QYu4DkPv9ECuu2PshdQyub2GMrb6VKF+KGFzfOWMqn285YohxTOVmW1RElHkNiMTf3x+jRo3CmzdvPvtaX19fbUtKRoGBgbCxsZFg6xhjjDEmtvfv36NXr16Ii4uDg4NDtq/NVYvIpEmTsGDBgmxfc+vWLVSsWDE3xWpNnjwZY8aM0T5/+/YtXF1d0apVq8/uiEZycjKOHj2Kli1bCp63o4rvYb1llmrC7FppmHZJjcQ0ld76676tBcUExN0HIPf7IcY+AOLvh9QxuL6FMbb6VqJ8KWJwfeeMqXy+5YghxjGluaKRE7lKRMaOHYv+/ftn+xp3d/fcFKnD0tISlpaWesvNzc1z/eYa8jefSkzVPzC169JUma4X80ATYx+A3O+H2B8WsfZD6hhc3+IwlvpWsnwxY3B954ypfL7liCHGMZWb7chVIlKoUCEUKlQoN3/CGGOMMZYlyTqrxsbG4tWrV4iNjUVqairCwsIAAGXLloWdnZ1UYRljjDFmRCRLRKZPn47Nmzdrn3t6egIATp48iSZNmkgVljHGGGNGRLIBzfz9/UFEeg9OQhhjjDGmwXPNMMYYY0wxnIgwxhhjTDGciDDGGGNMMXlqiHfGmHAxfu30liUnJ+PgwYO47tta8rEMGGMsN7hFhDHGGGOK4USEMcYYY4rhSzP/AdxUzxhjLK/iRIQxxowY/9Bgxo4vzTDGGGNMMZyIMMYYY0wxnIgwxhhjTDGciDDGGGNMMZyIMMYYY0wxnIgwxhhjTDGciDDGGGNMMZyIMMYYY0wxnIgwxhhjTDE8smo2eMTC/xaub8YYkx8nIowxxkwe/9DIu/jSDGOMMcYUw4kIY4wxxhTDiQhjjDHGFMOJCGOMMcYUw4kIY4wxxhTDiQhjjDHGFMOJCGOMMcYUw4kIY4wxxhTDiQhjjDHGFMOJCGOMMcYUw0O8M8YYY0xL7uHwuUWEMcYYY4rhRIQxxhhjiuFEhDHGGGOK4USEMcYYY4rhRIQxxhhjiuFEhDHGGGOK4USEMcYYY4rhRIQxxhhjiuFEhDHGGGOK4USEMcYYY4rhRIQxxhhjiuFEhDHGGGOK4USEMcYYY4rhRIQxxhhjismn9AZkh4gAAG/fvs3x3yQnJ+P9+/d4+/at6FMVy1E+x8hbMUxhHzhG3imfY+StGKawD3k1huZ7W/M9np08nYi8e/cOAODq6qrwljDGGGMst969ewdHR8dsX6OinKQrCklLS8OjR49gb28PlUqVo795+/YtXF1d8eDBAzg4OIi+TVKXzzHyVgxT2AeOkXfK5xh5K4Yp7ENejUFEePfuHYoXLw61OvteIHm6RUStVqNEiRIG/a2Dg4NkFSJH+Rwjb8UwhX3gGHmnfI6Rt2KYwj7kxRifawnR4M6qjDHGGFMMJyKMMcYYU4zJJSKWlpaYMWMGLC0tjbJ8jpG3YpjCPnCMvFM+x8hbMUxhH0whRp7urMoYY4wx02ZyLSKMMcYYMx6ciDDGGGNMMZyIMMYYY0wxnIgwxhhjTDGciORQUlIS7ty5g5SUFKU3JddSUlIQEBCAp0+fGnUMxhhjpsfkEpG3b99iz549uHXrlijlvX//HgMHDoSNjQ0qV66M2NhYAMDw4cPh5+cnSozMpKamIiwsDK9fvxZcVr58+TB48GB8/PhRhC1TLgYAjBgxAitWrNBbvmrVKowaNUr0eESUo0mbGGOMGcboE5Fu3bph1apVAIAPHz6gVq1a6NatG6pVq4Y//vhDcPmTJ09GeHg4Tp06BSsrK+3yFi1aYPv27YLL1xg1ahQ2bNgAID0Jady4Mby8vODq6opTp04JLr927doICwsTXI7SMf744w/Ur19fb3m9evWwa9cu0eIEBASgatWqsLa2hrW1NapVq4bffvtNtPKV9Pr1awQEBEgaIyEhAadPnzba8oH0Vj7NDw+pPHjwAD4+PkYfQ+r3So5jNjo6Gs2aNZM0htR18ebNG8nKlhQZuSJFilBYWBgREf3+++9UtmxZSkhIoP/9739Uo0YNweWXLFmSzp8/T0REdnZ2FB0dTUREkZGRZG9vL7h8DRcXF7p48SIREe3evZuKFy9Od+7coalTp1K9evUEl799+3Zyd3enlStX0rlz5yg8PFznIQY5YlhaWlJkZKTe8sjISLK0tBQlxuLFi8nGxoYmTJhAe/fupb1799L48ePJxsaGlixZIkqMrISFhZFareYYCpfPMfJWDFPYB7Fj+Pn50bZt27TPu3btSmq1mooXL679ThTK39+f/vzzT+3z8ePHk6OjI9WtW5diYmJEiUFElKcnvcuJuLg45M+fHwAQHByMzp07w8bGBu3atcP48eMFl//8+XMULlxYb3lCQkKOZwTOiRcvXqBo0aIAgIMHD6Jr164oX748fHx8sHz5csHl9+jRA0D6pQ0NlUoFIoJKpUJqaqpRxChbtiyCg4MxbNgwneWHDh2Cu7u74PIBYOXKlVi9ejX69u2rXda+fXtUrlwZvr6+GD16tChxskICLwW9ffs22/Xv3r0TVD7LuX379mW7/u7du0YRQ2pyHLOZXdLN6N9//xUcQ866WLNmDX7//XcAwNGjR3H06FEcOnQIO3bswPjx43HkyBHBMebNm4fVq1cDAM6fP49ffvkFS5cuxZ9//onRo0cjKChIcAwgj8++mxOurq44f/488ufPj+DgYGzbtg1AelNexksphqpVqxYOHDiA4cOHA4A2+Vi/fj3q1q0ruHyNIkWK4ObNmyhWrBiCg4O1lf/+/XuYmZkJLv/evXuCy8gLMcaMGYNhw4bh+fPn2mbU48ePY/HixVi2bJkoMR4/fox69erpLa9Xrx4eP34sqOxOnTpluz4uLk5wguvk5JRtGZrEUAhN8p8VoUmn1OUDgJeXV7brP3z4IDhGx44dtcl4VoTWhRwxpH6v5DhmR40ahWLFisHCwiLT9UlJSYLKB+SpC40nT57A1dUVAPDnn3+iW7duaNWqFdzc3FCnTh1RYjx48ABly5YFAOzZswedO3fG999/j/r166NJkyaixABMIBEZNWoUevfuDTs7O5QsWVL75pw+fRpVq1YVXP68efPg7e2NmzdvIiUlBcuXL8fNmzdx7tw5hISECC5fY8CAAejWrRuKFSsGlUqFFi1aAAD++usvVKxYUXD5pUqVElxGXojh4+ODxMREzJ07F7NnzwYAuLm56bVgCFG2bFns2LEDP/30k87y7du3o1y5coLK3r9/P1q2bIkiRYpkul6ML1h7e3tMmTIly5NRZGQkfvjhB0ExEhMTMWTIkCw/Y/fv38fMmTPzbPkAcPPmTfTo0QOlS5fOdP3jx48REREhKEaxYsXwv//9Dx06dMh0fVhYGGrWrJnnY0j9XslxzJYqVQoLFixAt27dMl1vLHWh4ezsjAcPHsDV1RXBwcGYM2cOgPSkTYzzCADY2dnh5cuXKFmyJI4cOYIxY8YAAKysrERJ1DWMPhH58ccfUbt2bTx48AAtW7aEWp3e/9bd3V1bMUI0aNAAYWFh8PPzQ9WqVXHkyBF4eXnh/PnzoiQ6Gr6+vqhSpQoePHiArl27aicWMjMzw6RJk0SLc/PmTcTGxupl/+3btzeaGEOGDMGQIUPw/PlzWFtbw87OTpRyNWbOnInu3bvj9OnT2o6xoaGhOH78OHbs2CGo7EqVKqFz584YOHBgpuvDwsLw559/Coqh+fXauHHjTNc7OTkJvvxTo0YNuLq6ol+/fpmuDw8PF5QoSF0+AFSpUgV16tTBkCFDMl0fFhaGdevWCYpRs2ZNXL58Ocsvps/9es4rMaR+r+Q4ZjXvU1aJiLHUhUanTp3Qq1cvlCtXDi9fvoS3tzcA4J9//tG2YgjVsmVLDBo0CJ6enoiIiEDbtm0BADdu3ICbm5soMQATSESA9Msn1apVw71791CmTBnky5cP7dq1E638MmXKCD4h5USXLl0AQOcW2KxOxLl19+5dfPPNN7h27ZrOh0HTTChGBi1HjIwKFSokankanTt3xl9//YWlS5diz549ANITiL///huenp6Cyq5ZsyauXLmSZSJiaWmJkiVLCorRq1evbH+tFC1aFDNmzBAUo127dtn20M+fP7+gFiqpyweA+vXr486dO1mut7e3R6NGjQTFGD9+PBISErJcX7ZsWZw8eTLPx5D6vZLjmJ01axbev3+f5XoPDw/Bl5flqAuNpUuXws3NDQ8ePMDChQu1P8geP36MH3/8UZQYv/zyC6ZOnYoHDx7gjz/+QIECBQAAly9fRs+ePUWJAZjA7Lvv37/H8OHDsXnzZgBAREQE3N3dMXz4cLi4uAhuTTh48CDMzMzQunVrneWHDx9GWlqaNgsVKjU1FfPmzcOaNWvw9OlT7X5MmzYNbm5uWX5x5dTXX38NMzMzrF+/HqVLl8bff/+Nly9fYuzYsVi0aBEaNmwoeB+kiuHl5YXjx4/D2dkZnp6e2V5jvXLliqGbL4vExESkpqbCxsZG6U1hjLE8wejHEZF6nI9JkyZl+kueiES9ZDJ37lz4+/tj4cKFOp2pqlSpgvXr1wsu//z585g1axYKFiwItVoNtVqNBg0aYP78+Tp3ueTFGB06dNBequrQoUO2j7zO0tJSkSTk4cOHSEtLkz0u07d169ZsfzUbSwypyXHM+vn5ST72hpR18dtvv6FBgwYoXrw47t+/DwBYtmwZ9u7dK1qMN2/e4MiRI9iyZQsCAgK0D1HHVRLtRmCFSD3Oh5WVFd27d09v+b1798jGxkZw+RplypShY8eOEZHufty6dYucnJwEl+/k5ER3794lIiJ3d3c6ceIEERFFRUWRtbW14PLliiEllUpFarU624eZmZnocdu2bUuPHj0SvdyM7O3ttceUscaQYx+qVKlCsbGxksYwhbogkv69MpX3SaoY//vf/6hgwYI0Z84csra21sbYtGkTNWnSRJQY+/btI3t7e1KpVOTo6EhOTk7ah7OzsygxiExgHBGpx/lwdHTE3bt39TrmREVFwdbWVnD5Gv/++2+mHYzS0tKQnJwsuPwqVaogPDwcpUuXRp06dbQtL7/++qto42/IEcPd3R0XL17UXqvUePPmDby8vATdp7979+4s150/fx4rVqyQ5Bfa6dOnRe2BnhmS4Qqs1DHk2IeYmBhRPm/ZMYW6AKR/r0zlfZIqxsqVK7Fu3Tp07NhRZ7qRWrVqYdy4caLEGDt2LHx8fDBv3jxJW3KNPhGRepyPDh06YNSoUdi9ezfKlCkDID0JGTt2rKh3mnh4eODMmTN6t8Du2rVLcAdJAJg6daq2eXDWrFn46quv0LBhQxQoUEC0oerliBETE5PppbLExEQ8fPhQUNmZXdq5c+cOJk2ahP3796N3796YNWuWoBiMMSaGe/fuZfrdYGlpKdqloH///RcjRoyQ/HKy0SYiCQkJsLW1lXycj4ULF6JNmzaoWLEiSpQoASD92mXDhg2xaNEiweXT/x+oZ/r06ejXrx/+/fdfpKWlISgoCHfu3EFAQIDg2zkB6HS2LVu2LG7fvo1Xr17B2dlZtAF2pIyRccTCw4cPw9HRUfs8NTUVx48fz3KMA0M8evQIM2bMwObNm9G6dWuEhYWhSpUqopWfUalSpWBubi5J2Ro//fTTZwcJE6pPnz5wcHAw2vIBoGHDhrC2tpY0xqFDh+Di4mL0MaR+rz49ZpOTk0X/nNy8eRPFixcXtcxPHTp0SCfGq1evRPksli5dGmFhYXo/XoODg1GpUiXB5QPp5/RLly6J1qKdJdEu8sjM3d2dzpw5Q0TpfRAGDRpEX3zxBVWqVIl69+5NV69eFS1WWloaHT58mBYuXEgrV66kkJAQ0cquW7eudu6U06dPU4sWLahQoUJkbW1N9evXp8OHD4sWiyi970xwcDC9f/+eiNL3TWxSxFCpVNo+HJr/ax4WFhZUvnx52r9/v+A4b968oQkTJpC1tTXVrVuXTp8+LbjMvCY8PJzMzc2V3oxsTZ06lZKTk7Ncf//+fWrRooWk23Dz5k0aO3asJGWfOnWKDhw4QK9evRJc1vv372nv3r309u1bvXVxcXG0d+9e+vjxo+A42YmOjqaWLVsa/Pd9+vShuLi4LNdfvHiRKleubHD5ecHhw4epa9euZGVlJUp569atIxcXF9q2bRvZ2trS1q1bac6cOdr/G0ozv9bevXtp/fr1VLJkSZoxYwbt2rVLZ93evXtF2Q+i9CnOjdL48ePJ3Nycxo0bR4mJiUpvjsG6du1Ktra2tGrVKknjvHjxgpo1a6b9Mtd0bBowYACNGTPGaGK4ubnR8+fPRSnrUwsWLKD8+fOTh4cH7dmzR5IYn04EmNVDSmJMvDV69OhMH76+vhQYGCj4i8/V1ZVq1KhB165d01u3Zs0asre3pzZt2giKkZn4+Hhav3491a1bl1QqleAvPz8/P5o6dar2eVpaGrVu3VqbRBcpUoSuX78uKMayZcuoWbNmWa5v3ry55OcXoceUl5cXubi4UHBwsM7ypKQkmjRpEpmbm9MPP/wgaBvd3NyodOnS2T7c3d0FxfhUTEwMTZ8+nUqVKkUODg7UvXt32rFjh2jlb9myhcqWLas9nlxcXGj9+vWCyvz0h15WDzEnCDTqcUQuXLgAHx8fqNVq/Pbbb6L0pQDSJ0f6/vvvYWVl9dmJksS49XXnzp0YNmwYqlWrhk2bNmkvAYmpb9++ePbsGdavX49KlSohPDwc7u7uOHz4MMaMGYMbN24YRQwpqdVqWFtbo0WLFtnO7yNkoie1Wp3l6IpiTxCYlfDwcHh5eQmK0bRp00yXv3nzBlFRUShSpAhOnDhh8OBsb9++xbBhw7Bjxw7MmDEDEydOxMOHD+Hj44OLFy/i559/xvfff2/w9n8qNDQUGzZswI4dO/DhwweMHj0agwYNEjy9gpeXFyZOnIju3bsDSP+s9+vXD0ePHkWlSpXQt29f2NjYCBqxt3bt2pg2bRq+/vrrTNf/+eefmDVrFv7++2+DY3yO0GMqJSUFs2bNgp+fHwYMGIDFixfj9u3b6NevH+Lj47Fu3Tq0atVK0DZmN3loTEwM1q5dqx3nR4ikpCQEBQVh/fr1CA0NRYsWLXDo0CH8888/oo7GndH79+8RHx+f6Y0bxsCoExEgvZPi1KlTsWrVKrRs2RL58ul2ezHkS6N06dK4dOkSChQokG2/A5VKJdpsis+fP8fQoUNx9OhRfPvtt3r7sWTJEkHlFy1aFIcPH0b16tVhb2+vTRLu3r2LatWqIT4+XlD5csUA0ie5W7p0KW7dugUgfdTTUaNGaefnMVT//v1z1Jdl06ZNBsfQ3Ov/OVLO2yNGIpKdt2/fonfv3rC3t0dgYKCgsvbu3YsffvgBRYsWxb1791C7dm2sX79elPfn2bNn8Pf3x8aNGxEXF4eePXuiV69eqFu3LsLDw+Hh4SE4hrOzM86dO6e9Zj9gwACkpqYiICAAQPqPqa5du+LBgweCYoSHh2eZ9MXGxqJ69ep4/fq1wTE+R6xj6tKlS+jfvz9evXqFFy9e4Ntvv8XSpUsl6xv06tUrzJ49G6tXr0adOnWwYMECfPnllwaXN3z4cGzduhXlypVDnz590KNHDxQoUADm5uaiHVNyCggIQPfu3bXjOGkkJSVh27Ztos3vZbSdVTUSExPx7NkzqFQqODo66n2BGyLjML9yzCgLpA9ZXalSJezevRv//POPzn6I0Zk0ISEh057Pr1690jvI8nKM//3vfxg5ciS6dOmCkSNHAkg/mbdt2xZLly7F0KFDDS7b398/V69/+PAhihcvrp3fKCfkmBhQjinVs+Pg4IBp06aha9eugsv68ssvUbVqVRw/fhy2traYOnWqaO9hqVKl0KVLFyxfvlxnnioxpaSk6Bz758+fx6hRo7TPixcvjhcvXgiO8fz58ywTkefPnyMlJUVQDLlYWVnB3NwccXFxsLCwQNOmTSVJQj58+IAlS5Zg0aJFKFWqFIKCgrTzqAixevVqTJw4EZMmTYK9vb0IW5q1rEaZVqlUsLKyQtmyZdG/f/8sWy9zYsCAAWjTpo1eS8u7d+8wYMAA0RIRo+0jQkR05MgRKlGiBH3xxRd08+ZNSWJoOsRK6fr16+Tl5UVubm7aQcDE5u3trb1WbWdnR3fv3qXU1FTq2rUrde7c2WhiuLi40MqVK/WWr1q1iooXLy5KjJwyZKAiOfqIfG5gNrGv72YmOjqa7OzsBJURGBhI+fPnp2bNmtHt27dp/PjxZGFhQaNGjaIPHz4I3sYKFSqQm5sb/fTTT3Tr1i3t8nz58tGNGzcEl09EVL16ddq0aRMRpXewValUOmWHhoaSi4uLoBh16tQhPz+/LNfPmzeP6tSpIyhGjRo1yNPTM8tHhQoVBB1TaWlpNG/ePLK0tKT+/fvT69ev6ZdffiE7Ozv65ptv6NmzZ4K2XyMlJYVWr15NRYsWJTc3NwoICBC1w35gYCC1aNGCbG1tqVu3brR//35KSUkR9ZjSmDRpEjk6OlKDBg1ozJgxNGbMGGrYsCE5OjrSyJEjqWXLlqRWqwX1d1OpVJm+92FhYaIOaGa0icj3339PlpaWNHPmTEpJSZEsjrm5Obm5udHkyZMFdyrLzPz588nS0pIGDBiQaa93sVy7do0KFy5Mbdq0IQsLC+rSpQtVqlSJihQpQlFRUUYTw9bWVnuXUUYRERFka2srSoycyjgCbk59eudPxuRArE5gp06dytFDSr///jtVr17d4L/v1KkT2dra0ooVK3SWh4aGUvny5al8+fJ07tw5gVtJdPbsWRowYADZ2dmRl5cXLVmyhPLlyyfaD5tff/2VbG1tycfHhzw8PKhevXo662fPnk1fffWVoBhr164lW1vbTO8a27dvH9na2tLatWsFxfD19c3Rw1C1a9emYsWK0b59+3SWR0dHU8OGDalgwYK0bds2Qfuwfft2KleuHBUqVIiWLVsm6U0Od+/epenTp1PJkiWpYMGCpFaraefOnaLGGDRoEM2aNUtv+ezZs2nQoEFERDR9+nSqWbNmrsvWJJ5qtZqqVq2qk3RWq1aN7O3tqWvXroL3QcNo+4hUqVIFAQEB2umjpfLixQts27YNW7duxfnz51GtWjX07t0bPXv2FKVTabFixfDrr79m2dFMTHFxcVi1ahXCw8MRHx8PLy8vDB06FMWKFTOaGL169YKnpyfGjx+vs3zRokW4dOkStm3bJkqcnMjYDyanMvYRISJUqVIFBw8e1LvcIPUlHKFjGVy9ejXT5XFxcbh8+TLmzZuHGTNmGHyprH79+vD390e5cuX01n348AGTJk3C6tWrkZSUZFD5n4qPj8fWrVuxadMmXLhwAY0bN0avXr3QsWNHwbM8b9y4Efv379fOIFu0aFHtuh9//BEtW7bEN998IyhGnz59EBgYiIoVK6JChQoAgNu3byMiIgLdunXD1q1bBZUvtR49euB///tfpsckEWHZsmWYNm2aoH5mms7oPXv2zPZyj9D+eBkREY4cOYINGzZg3759KFiwIDp16vTZmyBywtHREZcvX9YbkTsqKgo1a9ZEXFwcbt++jS+++CLXl2Nnzpyp/Xfs2LHamX0BwMLCAm5ubujcubPOvGhCGG0ikpSUlKs3wcHBAWFhYYIGZrl37x4CAwOxdetW3L59G40aNcKJEycMLg8AXr58qTdceXaqVq2KgwcPwtXVVVBcYzVnzhwsWrQI9evX146ce+HCBYSGhmLs2LE6JxixJvPLiiGJiBRl5MaRI0ewfv167N+/X9Cw8tnd/VOwYEGMGTMGEydONLh/U1pa2mf7bJw+fVrQ1PNZuXXrFjZs2IDffvsNr169knzId6Ho/99ptWPHDgQGBiIyMhJEhPLly6NXr17o1q2b0psoisjIyEwT05xq0qRJjo7HkydPGhwjO69evUJAQAA2bdqE8PBwweUVKVIEP//8s14/jYCAAIwfPx5Pnz7FzZs30bhxYzx//tygGJs3b0b37t11JpSVgtEmIrkl1gk/NTUVhw4dwrRp03D16lVJb7PMjKH74ebmBh8fHwwYMECyJEaOGDkdPVXMO5qyYiyJyP3797Fx40Zs3rwZr1+/hre3Nzp37iyoM2lWd/84ODjA2dnZ4HJzgogQHByMDRs2YNeuXZLFSU5Oxv79+9GpUyeDy/hcx2ENIR0y69Wrh4CAgEznqhJLVh0jP3XlyhXJtoHpmjNnDubNm4fvvvsOX3zxBQDg4sWLWL9+PX766SdMmTIFS5cuxcGDB3H06FFBsZKSkvDs2TO9ubYMvT3/U0Z/14xcQkND8fvvv2PXrl34+PEjOnTogPnz5yu9WTk2atQo+Pv7Y9asWWjatCkGDhyIb775RrS7WeSKIdddTDkh1tD4UshsLIOHDx+KNpaBHHf/fOrevXvYuHEj/P398fz5c8G3a+ckSRAaw8nJKdvjhEQYN6ZEiRKoUaMGFixYIOiusex07NhR+38iwvz58zF48GDRpg3IC4mOpiVMyNQdHh4eOHv2rPZ9+fHHHzFr1iwULFgQQPot425ubnj//r3g7Z06dSpKly6NVatW4bfffgMAVKhQAevWrUOvXr0AAIMHD8aQIUMMjhEZGQkfHx+cO3dOZ7kYx21G3CLyGZMmTcL27dvx6NEjtGzZEr1790aHDh0knwQoK0J/QV+5cgX+/v7YunUrUlNT0atXL/j4+Ija10aOGMD/zWqpVEIgVovI1atXRZ0nR86xDHbu3ImtW7ciIiICALSXA7p06SJK+YmJidi1axc2bNiAs2fPIjU1FYsWLcLAgQMF39apubyUFTFOtjmd76px48YGxwD+b1DEqlWrYtOmTZJfuhW7JU/TJwHIPtGZMWOGKPE0EhISsG3bNmzYsAEXLlyAh4cHrl+/bnB5arUaT5480d7u+mmXgKdPn6JYsWKCZ/FOSUnBvHnz4OPjI8kAmBr169dHvnz5MGnSJBQrVkzv81K9enVxAonW7TWPM+QOByKievXq0S+//CLZsOK5Zeh+fCopKYmWLVtGlpaWpFarqXr16rRhwwZRb2WTKsbmzZupSpUqZGlpSZaWllS1alUKCAgQaav/z+fmzImNjc31HVuf3gZpZmZGlStX1rsdUggzMzP66aef9O7CEvMWwtTUVOrWrRupVCqqUKECdejQgTp06EDly5cntVpN3bt3F1TPly5doiFDhpCTkxPVqlWLli9fTk+ePBF1H/LC3UVievbsGXXt2pWcnJxo+PDhesPvi0ms85BS5WvulrK1tSW1Wk1jx47VuYXbUCqVip4+fap9/ul+PHnyRLRb521tbenevXuilJUVGxsbUd6Xz/nPXJox5FdzcnIyKlSoAG9vb23TmrFLTk7G7t27sWnTJhw9ehRffvklBg4ciIcPH+Knn37CsWPHBI+GKWWMJUuWYNq0aRg2bBjq168PADh79iwGDx6MFy9eYPTo0YK2HUjvQNy9e3ecOHECKpUKkZGRcHd3x8CBA+Hs7IzFixcDgEG/OjM2cQNAhw4dBG/vp3777Tds3LgRxYoVQ7t27fDtt9/C29tb1BjLly/HsWPHsG/fPnz11Vc66/bt24cBAwZg+fLlOoN35UadOnUwfPhwXLhwQXsXiNiEtkLkNVIPimjsMhtJ99SpU6hbty58fHwED+cvt+bNmyMkJARubm6SxfDw8BA84F6OSJ7q5BGGZtgODg509+5dCbbIMIbux+XLl2nYsGFUoEABKlSoUKa/AK5duyZoZkg5Yri5udHmzZv1lvv7+5Obm5vB5Wb07bffUuvWrenBgwc673dwcDB5eHiIEkMOUo5lULVqVdqwYUOW69evX09Vq1Y1uPxWrVqRvb099erViw4dOqRtXZFiYCgpZTewXMaHUHIMipiRMbaIWFlZUZ8+fSg4OJhSU1O1y8U8ptRqtc4AYJqBHTXEbBHRDMw2duxYCgwMlGRm3OPHj1PdunXp5MmT9OLFC4qLi9N5iMXkEpGUlBT6559/9KbXPnPmjEEzgvbt25eWLFki1uZlafPmzZluX2Jios4X7++//07x8fG5Ll+tVlPr1q1px44dlJSUlOlr4uPjqX///rkuW84YlpaWWQ5oZmlpaXC5GRUpUoTCwsKISPeEGB0dLXjQtA8fPsg+ZXtaWhoFBwdT165dydLSklxcXGj48OGCyrSysqL79+9nuT4mJkbwdOexsbE0c+ZMcnNzoyJFitCIESNEHWxMjiRBpVKRm5sbzZgxg/bs2ZPlQwg5BkVcvny5zsPKyoqmTZumt1wsUiQicoykq1KpdAYA+/TSa9WqVUVLROSYGffTgRelGp3Z6Durjho1ClWrVsXAgQORmpqKxo0b49y5c7CxscGff/6JJk2aCCp/zpw5WLx4MZo3b46aNWvC1tZWZ71YY1WYmZnh8ePHemP6v3z5EoULFxbcO/n+/fuS3+kgR4wqVaqgV69e+Omnn3SWz5kzB9u3b8e1a9cEx7C3t8eVK1dQrlw5nU55ly5dQuvWrfHy5UuDy16+fDn27duH48ePZ7q+RYsW6NixI4YNG2ZwjOy8fPkSv/32m+CxDPLnz49Tp06hWrVqma6/du0aGjVqJNpEa0ePHsWmTZuwe/duuLq6okuXLujSpYugDtBqtRqlSpVCv379sp25W8jls0uXLmHDhg3Ytm0bSpcuDR8fH/Tu3VvUW5zlGBQxJ52phdwy/+kAXxMnTsT48eP1LokLPd9qZlneuXMnypcvjz59+mDChAm4evWqdmJCITJ2us2O2J1upfK5ztaiXd4ULaVRiIuLC128eJGIiHbv3k3FixenO3fu0NSpU/WGUzaEm5tblo/SpUsLLl9DrjH9jd2uXbvIzMyMWrduTbNmzaJZs2ZR69atKV++fBQUFCRKDCnnzPniiy/0hrHOaP/+/fTFF18IipHR8+fP6eLFi3Tp0iV68eKFaOW2bduWBg8enOX6H374gby9vUWLp/Hq1StasWIF1ahRQ/AvsosXL9LgwYPJycmJPD09aeXKlXotqWL58OED/fbbb9SsWTOysbGh7t2705EjR0QpW8x6VUp251kpzrfv3r2jX3/9lerWrUsqlYqaNGlCv/76q2hz2rDcMfoWESsrK0RFRaFEiRL4/vvvYWNjg2XLluHevXuoXr16jgcUUorm/vnw8HBUrlxZp4NZamoq7t27hzZt2mDHjh0KbmXecvnyZSxduhS3bt0CAFSqVAljx47N9ldtbly/fh3NmzeHl5cXTpw4gfbt2+PGjRt49eoVQkNDUaZMGYPLlmvK9hs3bmDIkCEIDQ3VWd64cWOsXr1acAfQc+fOoUmTJujYsSPGjRuHihUrgohw69YtLF68GHv37sXJkye1HYqlcOXKFVFuCf/48SN27dqlHd7966+/xsCBA9GyZUsRtlLfvXv3MHDgQISEhOD58+eCx+IICAjI0euEzpRKRIiKikJSUhIqVKggykznecGtW7ewfv16bNmyRbKRdENCQpCQkIC6deuK2hqWkJCAkJAQxMbG6k13IFZr/Zs3b7Bhwwbt+bZy5crw8fGBo6OjKOUDMP4WkZIlS9Lhw4cpJSWFXF1d6c8//ySi9M5bTk5OosVJTEyk27dvU3JysmhlEv3fZFIqlYrGjRunM4HUvHnzKDAwUNLJmVjm3rx5Q3PmzKGuXbuSt7c3TZkyhR49eiS4XDs7O7p06VKW6y9duiR41trHjx9TgQIFqGLFirRs2TIKDg6mQ4cO0eLFi6lixYpUqFAhnVsMDRUUFKTtBJvxUaBAAdq1a5fg8rMTHh5O5ubmopd79+5datq0KanVanr58qWoZT948IBmz55NZcqUoWLFitHEiRNFOZ84OTll+XB2diYLCwvBrUd3796lKlWqaOvY1dWV/v77b8HbnlFaWhpFRETQ9evXRT/P5kRycjL98ccfgsrw8/PTtqYSpe9T69attX0tihQpItrkqVeuXKGiRYuSg4MDmZmZUaFChUilUpGtra1orUcXL16k/Pnzk4uLC33zzTf0zTffUIkSJahAgQJ0+fJlUWIQmUBn1RkzZpCjoyNVrFiRSpYsqe3ot2HDBvryyy8Fl5+QkEA+Pj5kZmZGZmZm2g5Uw4YNo/nz5wsunyi9g62/v78oX3Qsb5NjyvYJEyaQl5cXffjwQW/d+/fvycvLiyZNmiQohkZCQgIFBQXRggULaMGCBbR7925KSEgQpezshIWFidpZTqokITExkbZt20YtW7YkKysr+uabb7RTw0vt0aNH9MMPP5C5uTm1bt1aUFmdO3emihUrUmBgIAUFBVG9evXIy8tLpC2VJ9HJyqlTp+jAgQOiXJbz9PTUmSV4x44dZG1tTWfPnqWXL19Su3btRJu1tnHjxvTdd99RamqqtnNvbGwsNWrUSHBCpdGgQQPq37+/zmchOTmZ+vXrRw0bNhQlBpEJJCJERDt37qQlS5bQgwcPtMv8/f0F90YnIhoxYgTVrFmTzpw5Q7a2ttpEZM+ePVSjRg3B5WtYWlrKcpuwVC07n0pLSxN1cDQ5bdy4kXbs2KG3fMeOHeTv7y+obDmmbPf09KTt27dnuX7r1q2CB01TmhiJiBxJQv78+alUqVI0ffp0ioyM1Lv9UezbIImI3r59S1OmTCE7OzuqU6eOKLfzFilShM6cOaN9/ujRI1Kr1QbdwZcZqRMdInlaK5ycnHTu6urfvz99++232ufnz5+nEiVKCIqh4ejoSLdv39b+XxP3woULVKFCBVFiWFlZZTqg2Y0bN8ja2lqUGEQmkIjk9LZXQ5UsWZLOnz9PRLq3lEVGRpK9vb3g8jVq1qxJx44dE628T8nRskMk36inUipXrlymJ+9Tp05R+fLlBZffu3dvUqlUVKlSJerYsSN17NiRKlasSGq1mnr06CG4fEdHx0xvcdaIjIwkR0dHQTE+vW0zq4dUxEhE5EgSPr2lUsrbIJOSkmjx4sVUoEABKl++vGhjxhCl78eTJ090ltna2or240nqRIdIntaKT287rlChAq1evVr7/P79+4Jva9coWLAgRUREEFH6OSs4OJiIiG7dukU2NjaixChcuDAdPnxYb3lwcDAVLlxYlBhEJpCIqNXqTK93v3jxQpQPuLW1tfbAyniQhYWFkYODg+DyNQ4dOkQ1atSg/fv306NHj0T/xSRHy87ixYvJxsaGJkyYoB1UZ/z48WRjYyPLWCxisbS0zHTo5Hv37ol2Etm+fTt16NCBPDw8qFKlStShQ4dsWzFyI6vPhMaTJ0/IzMxMUIxP72gwMzOjEiVKiHaXQ1ZJgeZx5swZUcb4kDpJkGMY+bS0NPL396eSJUtS8eLFae3ataJf+lGr1RQVFaVTB/b29hQeHi7KeUrqRIdIntaK6tWr06ZNm4goPelQqVQ6Y5SEhoaSi4uLoBgaLVu2pN9//52IiAYNGkS1a9emLVu2UOvWral27dqixBg+fDiVKFGCtm3bRrGxsRQbG0tbt26lEiVK0MiRI0WJQWQCiYjUt702bNiQVqxYQUS6o+QNGzZM8HXXjLI6KYr1i0mOlh2pRz1NSkoiMzMzunbtmuCysuPq6prpyIR79uwR7SSSU/Pnz6fXr1/n6m8y+9LI+IiIiBC1fwWR+ANQZZUcGFuSkFuG1HeVKlXIxsaGJk6cSI8fP5asZSerOhCjPqROdIjkaa349ddfydbWlnx8fMjDw0NvCInZs2fTV199JSiGxsWLF7Utt0+fPqXWrVuTvb09eXl5aQdkFCoxMZFGjBih7fCsVqvJ0tKSRo0aJerAi0Z7/5XmtleVSoXmzZtnedurUPPmzYO3tzdu3ryJlJQULF++HDdv3sS5c+dyPLNmTpw8eVK0sjLz/PlzvcHSgPTbv8Sah+Lx48eoV6+e3vJ69erh8ePHgss3NzdHyZIlRZt6Ois9e/bEiBEjYG9vj0aNGgFIv/1u5MiR6NGjh6SxPzVv3jx069YNTk5OOf4bIkL58uWzXZ/X5x6R+vMA5H4wJj8/PwwePDhXdZFbhtT3jRs3AAALFy7Ezz//rLeeRJhFWOr6yOyYJSLtLfli7EOZMmVw+vRpuLu7IzY2FhEREdrPNwA8fPgQBQoUMLh8APjuu+9gZmaG/fv3o1GjRnoDlz169Ag+Pj6CYmjUqlVL+//ChQsjODhYlHIzsrCwwPLlyzF//nxER0cDSH8fxZ593mgTEc3kYWFhYWjdujXs7Oy06ywsLODm5obOnTsLjtOgQQOEhYXBz88PVatWxZEjR+Dl5YXz58+jatWqgsvXkHoCrlq1auHAgQMYPnw4gP+bBGv9+vWoW7euKDHKli2LHTt26I16un37dpQrV06UGFOmTMFPP/2E3377TfD4C1mZPXs2YmJidBLctLQ09O3bF/PmzZMkZlbIgGF+5PgSl5qpJAm5lVfrW+r6kGMfhg4dimHDhuHMmTO4cOEC6tatCw8PD+36EydOiDIWkY+PT5bJxv/+9z+d53Ict2KwsbER9fvuU0Y/oNnmzZvRvXt3WFlZKb0pgkk5cMzZs2fh7e2NPn36wN/fHz/88INOy07NmjUFx/jjjz/QvXt3tGjRQjuQVWhoKI4fP44dO3bgm2++ERzD09MTUVFRSE5ORqlSpfSG3L9y5YrgGBoREREIDw+HtbU1qlatKvnw9ZnJOMS8VMQ4GcqxndlxcHBAWFiYpPHl2Edjqe/Pkbo+DN2HjRs3Yv/+/ShatChmzJiBokWLatf9+OOPaNmypSjnqZwS8j49ffoU48aNw/Hjx/Hs2TO9JFZI61FOW202btxocIyMjD4R0UhKSsKzZ8+QlpamszyrESxz6sqVKzA3N9dmg3v37sWmTZvg4eEBX19fWFhYCCpfQzOPibW1NWrXrg0AuHjxIj58+KBthREqOjoafn5+CA8PR3x8PLy8vDBx4kRRM12pRz393FwOxjKHQ07J8cVkyMnw0xGLS5QogbNnz+pNSe7g4CDGJn6WqSQJebW+c0vq/ZBjH+RI2IS8T97e3oiNjcWwYcNQrFgxvcutQuZI0szD5OnpmW0r3e7duw2OkZHRXprRiIyMhI+PD86dO6ezXIxrigDwww8/YNKkSahatSru3r2L7t27o1OnTti5cyfev3+PZcuWCSpfY/To0Wjfvj3WrVunvRyQkpKCQYMGYdSoUTh9+rTgGGXKlMG6desEl5OdmjVrYsuWLZKVL1WiMWbMGMyePRu2trYYM2ZMtq9dsmSJJNugFEN+izg5Oemc+DJez9c8F+Pzx8RnCr895dgHOS7FCXH27FmcOXMGNWrUEL3sIUOGYOvWrbh37x4GDBiAPn36SHYpHDCBRKR///7Ily8f/vzzz0yzQqEiIiK0Fb1z5040btwYgYGBCA0NRY8ePURLRC5duqSThABAvnz5MGHCBJ1OSUKkpaUhKioq05ajjJ22DNW3b180bdoUjRs3lvSXyps3b7Br1y5ER0dj/PjxyJ8/P65cuYIiRYrAxcXFoDL/+ecf7RwT//zzT5avy+udPOViCv1QGMtOXk/YXF1dJdvGX375BUuWLEFQUBA2btyIyZMno127dhg4cCBatWol+nnQ6BORsLAwXL58GRUrVpSkfCLSfmkfO3YMX331FYD0g+DFixeixXFwcEBsbKzefjx48AD29vaCy79w4QJ69eqF+/fv6x28Yv1ytbCwwPz58zFw4EC4uLigcePGaNKkCRo3bixaZ9WrV6+iRYsWcHR0RExMDL777jvkz58fQUFBiI2NzfEEYJ/K+MWal75kGzZsCGtra6U3Q09e7ExqCvJqfbO8Z9myZZg0aRLWrl2rd0lUDJaWlujZsyd69uyJ+/fvw9/fHz/++CNSUlJw48YNnRtEhDL6RMTDw0PUhOBTtWrVwpw5c9CiRQuEhIRg9erVANJn0CxSpIhocbp3746BAwdi0aJF2ltgQ0NDMX78ePTs2VNw+YMHD9beOSNFyxGQfgcOAPz77784ffo0QkJCsHjxYvzwww8oVqwYHj58KDjGmDFj0L9/fyxcuFAnQWvbti169eoluHwA2LJlCzp16iT6LWqfykkL1cGDByXdBrnk9WbunBCaJPyX6ptJw9nZWefcnZCQoL2d1tzcXOe1r169Ei2uWq2GSqUCEUlyudXoE5EFCxZgwoQJmDdvHqpWrapXGUI7yy1btgy9e/fGnj17MGXKFJQtWxYAsGvXrkzHzDDUokWLoFKp0LdvX6SkpABIHzdjyJAh8PPzE1x+ZGQkdu3apd1+KTk7O6NAgQJwdnaGk5MT8uXLh0KFColS9sWLF7F27Vq95S4uLnjy5IkoMUaPHo3Bgwejffv26NOnD1q3bg0zMzNRytaQo4UqL5G6mTuvJwn/tfrmlp2cye37JFZXgJxITEzUXpo5e/YsvvrqK6xatQpt2rSBWq0WNZbRJyItWrQAADRv3lxnuVid5apVq4Zr167pLf/5559F/XKSeuCYOnXqICoqStJE5KeffsKpU6fwzz//oFKlSmjcuDEmTZqERo0awdnZWZQYlpaWendsAOl9ecRKdh4/fozg4GBs3boV3bp1g42NDbp27YrevXuLlnzK0UKVU3n9S8MUkgRTqu+80LKT149ZQJr3qV+/fqJtX3Z+/PFHbNu2Da6urvDx8cHWrVtRsGBByeIZ/e27nxvdVOqBwqTw4MEDAOn9UMSye/duTJ06FePHj8+05ahatWqCY6jVahQqVAijR49Gp06dsh3d01CDBg3Cy5cvsWPHDuTPnx9Xr16FmZkZOnbsiEaNGon+i+H9+/fYvXs3AgMDcezYMZQoUUKbKApha2uL8PBwyVuopO6gnFOG3qYoR5JQo0YNlC9fHjNnzsw0SRBjHB9TqW856iOvHLNt27bFhg0bUKxYsVz/rZTv06NHj7BkyRJMnz5dr8U/Li4Oc+bMwbhx4wR1HVCr1ShZsqR2BPOsBAUFGRwjI6NvETHGRCMzKSkpmDlzJlasWIH4+HgAgJ2dHYYPH44ZM2boJQ65pRllNuNANZprfmKdQP755x+EhITg1KlTWLx4MSwsLLQdVps0aSJKYrJ48WJ06dIFhQsXxocPH9C4cWM8efIEdevWxdy5cwWX/ykbGxu0bt0ar1+/xv3797XjowglRwuVKVwOkKMlQY7LlqZS31LXh1zHrNStOlK+T0uWLMHbt28z7Xbg6OiId+/eYcmSJViwYIHBMfr27Stvq51os9Yo6PTp09S7d2+qW7cuPXz4kIiIAgICdKaVzusGDx5MhQsXpjVr1lB4eDiFh4fTmjVrqGjRojR48GDB5cfExGT7kEJYWBj169eP8uXLJ/oka2fOnKFffvmFFixYQEePHhW1bCKihIQE2rJlC3l7e5OFhQWVKVOGpk6dSrdu3RKl/KCgIPLw8KBNmzbRpUuXtHWueYihevXq1LVrV7p58ya9fv2a3rx5o/OQk6GT4tnY2FBkZKQEW/R/mjZtSocOHZI0hqnUt9T1Icc+nD9/nkqXLq2drO/TCUfFIOX7VLly5Wy/20JDQ8nDw0OS2Fl58OABpaamGvz3Rp+I7Nq1i6ytrWnQoEFkaWmpPdmtXLmSvL29Fd66nHNwcKCDBw/qLT9w4AA5ODgosEU5FxISQsnJyZSWlkaXL1+mxYsX09dff03Ozs5kZmZGnp6eNGrUKKU3M8e6d+9Otra2VKhQIRo6dCidO3dO9BifngA1J0FjORnmlre3Nz169CjXf2cqSYKp1LfU9SHHPsiR7Ej5PtnY2ND9+/ezXH///n2ysbGRJHZW7O3tBc2+bfSXZubMmYM1a9agb9++2LZtm3Z5/fr1MWfOHMHlz5o1C+PGjdPrNPrhwwf8/PPPmD59uuAYQHonzMzuBS9durQow8jv3LkTW7duRUREBACgfPny6NWrF7p06SK47KZNm+Lx48eoUKEC4uPjUb16dTRu3BjfffcdGjZsKPotm8ePH9cbRn7UqFHajstCmZmZYceOHZLcLaNx7949ScrNSI7LAYC0zdzDhw/H2LFj8eTJE8n6Nslx2dJU6lvq+pBjH+S4FCfl+2RtbY2YmJgspy+JiYmRvSMvCexqavSdVW1sbHDz5k24ubnpdIi7e/cuPDw88PHjR0Hlm5mZ4fHjxyhcuLDO8pcvX6Jw4cKiXbOcNWsWbt++jU2bNsHS0hJA+u1TAwcORLly5Qwe2jwtLQ09e/bEzp07Ub58ee2Aabdu3UJUVBS6du2KrVu3CroeqFar8eTJE1y8eBENGzaUdH6R//3vfxg5ciS6dOminTX4woUL2LVrF5YuXYqhQ4cKKj85ORlt2rTBmjVrRBuETSlydFCW+pp+ZrcJip0k3L9/P9v1Skx2aAi5OqR/Ssz6kGMfmjVrhgkTJqBNmzaCy8qKlO9Tu3btULx48Syn6xg0aBAePXok65g0QucWMvoWkaJFiyIqKkqvNeHs2bOiDDOuOXA+FR4eLurY+//88w+OHz+OEiVKoHr16toYSUlJaN68OTp16qR9bW56Ki9fvhzHjh3Dvn37tKPCauzbtw8DBgzA8uXLMWrUKEHbr1Kp0K5dO0Fl5MS8efOwdOlSDBs2TLtsxIgRqF+/PubNmyc4ETE3N8fVq1eFbmaOREdHY9myZdqWHQ8PD4wcORJlypQRpXw5fulL3XlRjpYEuRINU6hvqetDjn2Qo5VNyvdp3LhxaNmyJRwdHTF+/Hjt3TFPnz7FwoUL4e/vjyNHjkgWXwpG3yIyf/58bNmyBRs3bkTLli1x8OBB3L9/H6NHj8a0adMwfPhwg8rVjGAXFxcHBwcHnRNsamoq4uPjMXjwYPzyyy+i7MeAAQNy/NpNmzbl+LXVqlXDqFGjspzWecOGDVi+fLmgL1+1Wg1vb29tS05WxLjVy87ODmFhYXrNqpGRkfD09NTecSTE6NGjYWlpKcpAclk5fPgw2rdvjxo1aqB+/foA0kfSDQ8Px/79+9GyZUvBMeT4pS/XbalSkzpJMJX6lpoc+yBHK5vU1q5di5EjRyI5OVn7/RQXFwdzc3MsXboUQ4YMkXV7hLaIGH0iQkSYN28e5s+fj/fv3wNI728xbtw4zJ492+ByN2/eDCKCj48Pli1bpjOWgIWFBdzc3LSXBvIya2tr3LlzJ8vriffv30fFihXx4cMHg2Oo1Wp069bts9clc5NAZaVXr17w9PTE+PHjdZYvWrQIly5d0uknZKjhw4cjICAA5cqVQ82aNWFra6uzXozZdz09PdG6dWu9ZGfSpEk4cuQIrly5IjiGHORo5jaFJMFU6huQvj6kJlfCJvX79PDhQ+zcuRNRUVEgIpQvXx5dunRBiRIlRCk/N/7ziYhGUlISoqKiEB8fDw8PD9Em5AkJCUH9+vV1ZsWV0rNnz3Dnzh0AQIUKFfT6puRW/vz5cerUqSybG69du4ZGjRrh9evXBsfQ9BERuq1ZWbFihfb/b9++xaJFi1C/fn2dPiKhoaEYO3Yspk6dKjhe06ZNs1ynUqlw4sQJwTGsrKxw7do1vX4oERERqFatmuC+TRpSnwylvqZvKkmCqdS3HPVh7IkOIM/7lJCQoPcjSSlmZmaIjIw0vDuEwffb/IdERUXRlClTqEePHvT06VMiIjp48CBdv35dtBhxcXHUp08fypcvn/b2vnz58lHv3r0F3VLWtm3bbMch+eGHHwTf5qxWq7XvixTc3Nxy9ChdurRk2yC2EiVK0I4dO/SWb9++nVxdXUWJERwcTBYWFlS7dm0aPXo0jR49mmrXrk2WlpZ05MgRUWJIfVtqjRo1aOLEiXrLJ06cSJ6enoLLJyKytLSkiIgIveV37twhS0tLUWKYSn1LXR9y7ANR+jl92LBh1Lx5c2revDkNHz6coqKiRCtfjuPW1taWBgwYkCfGy1Kr1YJu3zXKROSbb77J8UOoU6dOkbW1NbVo0YIsLCy0b/b8+fOpc+fOgsvX6NatG5UrV46Cg4MpLi6O4uLiKDg4mCpUqEDdu3c3uNzQ0FAyNzenrl270l9//UVxcXH05s0bOn/+PHXp0oXMzc3p7NmzgrZdpVJJmogoJTIykoKDg+n9+/dERJSWliZa2TNnziQnJyfy8/Oj06dP0+nTp2n+/Pnk5OREs2bNEiWGHCdDqQfKM5UkwVTqW+r6kGMf5Eh25Dhud+/eTR06dCBzc3MqV64czZ8/n/79919Rys4tQwcs1DDKRKR///7aR79+/cjBwYFcXV21yUfJkiXJwcGB+vfvLzjWl19+SYsXLyYi3Tf7r7/+IhcXF8Hla9jY2GSa2Z4+fVrw4DRBQUFUsGBBUqvVOo8CBQrQrl27BJVNlJ6sJScn5/j1VapUodjYWMFxpfLixQtq1qyZ9le9ps4HDBhAY8aMESVGWloaLVmyhFxcXLQtCS4uLrRs2TLREh45ToZSM5UkwVTqW+r6kGMf5Eh25DhuNZ49e0aLFy+mqlWrUr58+ahdu3b0xx9/5OqcLNR/MhHJaMKECTRo0CBKSUnRLktJSaHvv/+exo0bJ7h8W1tbunv3LhHpvtn37t0T9WTu6upKV69e1VseHh4uSsKTkJBAQUFBtGDBAlqwYAHt3r2bEhISBJdriNwetKNHj6b4+Hjt/7N7iOHbb7+l1q1b04MHD3S2NTg4WJKhk9++fUtv374VvVy5ToZSNnObSpKQkTHXt9T1Icc+yJHsyHHcZmbFihVkaWlJKpWKChUqRNOmTZPlPP+fT0QKFixIt2/f1lt++/Ztyp8/v+DyXVxcKDQ0lIh03+ygoCByd3cXXL7G2rVrqUWLFvT48WPtssePH1OrVq1ozZo1osX5HDlaK3J70DZp0oRev36t/X9Wj6ZNm4qyfUWKFKGwsDC9bY2OjiZbW1tRYshBjpOh1M3cppIkyMEUkjY59kGOZEfO4/bJkye0YMECqlSpEtnY2FDv3r3pxIkTFBAQQJUrV6aWLVuKGi8z//lExMnJifbs2aO3fM+ePeTk5CS4/LFjx1KDBg3o8ePHZG9vT5GRkXT27Flyd3cnX19fweVr1KhRg+zs7Mjc3JzKlClDZcqUIXNzc7KzsyNPT0+dh5SEHlBSxYiOjpbkiyczdnZ22l9MGbf14sWLgpJbT09PevXqFRGl1/en9Sp2HctxMpSjmVvD2JIEU6zvjKSoDzn2Qe7WCqmO2z/++IO++uorMjc3p+rVq9PKlSu1P9g0oqKiyNzcXPTYn/rPzzUzYMAADBw4ENHR0ahduzYA4K+//oKfn1+uBgnLima0TldXV6SmpsLDwwOpqano1auXKLeKanTs2FG0skxRuXLldIba7969O1asWKEdVVBMDRs2REBAgHYcGpVKhbS0NCxcuDDbW3s/p0OHDtpB3+Sob5VKhdGjR2P06NF49+4dgPT7/cV069Yt7NixQ2+5ZvwdMYm57V5eXjh+/DicnZ3h6emZ7Yiwht6+a4r1nZEUZcuxD9OmTYO9vT0WL16MyZMnAwCKFy8OX19fjBgxQtRYgHR1MGDAAPTo0QOhoaH44osvMn1N8eLFMWXKFEniZ0T/9blm0tLSsGjRIixfvhyPHz8GABQrVgwjR47E2LFjRZu0LDY2FtevX0d8fDw8PT2Nfh6SrAgdmEaqGJ+OVSLldl6/fh3NmzeHl5cXTpw4gfbt2+PGjRt49eoVQkNDjWo8A6m5urpiyZIl6Nq1q87yHTt2YNy4cYiNjc11mXIkCTNnzsT48eNhY2ODmTNnZvtaQ+d5MhVy1IdSxEx25H6f3r9/rzcZq1IePHiA4sWLG/x9a/QtImq1GhMmTMCECRPw9u1bAJBk0rWSJUtmOTopMy1VqlRBREQEVq1aBXt7e8THx6NTp04YOnQoihUrpvTmZUvuk+F3332H77//Hnfv3kW9evUApA/ctGDBAowZM8agMuVoSciYXBhzomEKLTtKJjpitlbIcdxqvuOyep6RGN+DHz9+xMqVK3Hy5MlMZ9fW1Ierq6ugOEafiGQkRQKSmpoKf39/HD9+PNOKEGOUTSA9ocruA2gM8x8EBASge/fuenPOJCUlYdu2bejbty+A9HkScntJRaVS6b0/Yk+wlpGjo6OkTZqauYw+pVKpYGVlhbJly6J///65vrwo9+UAKZq5TSVJyMiY61vq+pBjH+RIduQ4bp2cnD573iMR58wZOHAgjhw5gi5duqB27dqSnXON/tLM06dPMW7cOG2i8OnuCK2MYcOGwd/fH+3atct0dtGlS5cKKl9j7969Os+Tk5Pxzz//YPPmzZg5cyYGDhwoSpzPEXLJw8zMTKcfh8bLly9RuHBhQXXx6cR6+/fvR7NmzfSGOBYysd6LFy+QkJCgM9fEjRs3sGjRIiQkJKBjx47o1auXweVntHTpUsydOxfe3t7avk1///03goODMXr0aNy7dw+//fYbVq5cie+++06UmFKTo1+CFKRKEjIyxfo2JqZyKS4kJCTHr23cuLHgeI6Ojjh48KB2mHqpGH0i4u3tjdjYWAwbNizTRKFDhw6Cyi9YsCACAgLQtm1bQeUYKjAwENu3b9dLVHIrp60VgYGB6NChg0FzGKjVajx9+hSFChXSWR4eHo6mTZvi1atXBm9/Tr8EhEys17NnTxQvXhyLFy8GkD7vT8WKFVG8eHGUKVMGhw4dwoYNG/Dtt98aHEOjc+fOaNmyJQYPHqyzfO3atThy5Aj++OMPrFy5Er/++iuuXbsmOJ6xMpUkwVTqW476MAWm8j55eHhg27ZtgueM+hyjT0Ts7e1x5swZ1KhRQ5LyixcvjlOnTqF8+fKSlP85d+/eRbVq1QRPby9la4WmqTM8PByVK1fWmSAwNTUV9+7dQ5s2bTK9u0IqDx8+RPHixTOd8jsrpUuXhr+/v/aXxKJFi7BmzRrcvn0b+fLlw6JFi7Br1y5cuHBB8PbZ2dkhLCwMZcuW1VkeFRWFGjVqID4+HtHR0ahWrRoSEhIMiiHVyVDOa/qmkiQYc31nJHV9mMoXuFwtYG/evMHff/+dabcBzY9LIQ4dOoQVK1ZgzZo1os1KnBmj7yPi6uoq+Nah7IwdOxbLly/HqlWrJO2TkJkPHz5gxYoVcHFxEVyW5rrhpx4+fAhHR0dBZWuu64aFhaF169Y6Mx9bWFjAzc0NnTt3FhQjtzw8PBAWFparS0xPnjyBm5ub9vmJEyfQqVMnbWLVvn17zJ8/X5Tty58/P/bv34/Ro0frLN+/fz/y588PIH12TSGXOaZPn57lyXDo0KG4d+8ehgwZgpSUlFydDOXsh3L27FnMmTMn2yShWrVqWLFihcEn9MOHD2PBggV6y5s3b46xY8cCANq2bYtJkyYZVD5g3PWdkdT1Icc+yJHsyHHc7t+/H71790Z8fDwcHBx09kmlUomSiNSqVQsfP36Eu7s7bGxs9GbXFtLKrUPYMCbKO3z4MLVq1Yru3bsnSfkdO3YkR0dHKl26NH311VeiT6qn4eTkRM7OztqHk5MTmZmZkb29Pe3du9fgcjUDKanVaqpatarOIErVqlUje3t76tq1qyj74O/vTx8/fhSlLKEMGTStcOHC2hFViUhvLp6IiAjRRlb99ddfyczMjL7++muaPXs2zZ49m9q3b0/58uWj9evXExHRokWLqFu3bgbH6NSpE61evVpv+Zo1a6hTp05ElD4kdJUqVQyOITVbW1uKjIzUWx4ZGamti6ioKEHzMbm6utKSJUv0li9ZskQ70mZ4eDgVKVLE4BimUt9S14cc+7BkyRIqUKAA9enTh1asWEErVqygPn36UMGCBWnu3Lk0aNAgsrS0pF9//dXgGHIct+XKlaORI0dKOoR78+bNqVy5cuTn50ebNm0if39/nYdYjL5FpHv37nj//j3KlCkjScbm5OSEb775RlAZOfHp4E9qtRqFChVCnTp14OzsbHC5crZWaFoh6tSpo7P8r7/+gpmZGWrVqiVKHKl8+eWXWLFiBdatW4egoCC8e/cOzZo1066PiIgQfJuaxnfffQcPDw+sWrVK28G2QoUKCAkJ0d4Gq/k1big5fulLTY6WhGnTpmHIkCE4efKk9lf4xYsXcfDgQaxZswYAcPToUUGd/0ylvqWuDzn2QY7WCjmO23///RcjRoyQdCyRc+fO4fz586hevbpkMQATuDQj9uiNGaWkpKBp06Zo1aoVihYtKlkcAOjXr58k5Wp6gLu5uaFHjx56nVXFNHToUEyYMEEvEfn333+xYMEC/PXXX5LFFsPs2bPRvHlzbNmyBSkpKfjpp590ksBt27aJ0hNdo379+pL2RpfjZCh1M7epJAmAadS31PUhxz7IkezIcdy2bt0aly5dknTwyYoVK+LDhw+Sla9h9ImIVF/gAJAvXz4MHjwYt27dkiyGXLeMytFacfPmTXh5eekt9/T0xM2bNwWXL7Vq1arh1q1bCA0NRdGiRfXeqx49eqBy5cqixYuOjsamTZtw9+5dLFu2DIULF8ahQ4dQsmRJUeLIcTKU+pq+qSQJgGnUt9T1Icc+yJHsSPU+7du3T/v/du3aYfz48bh58yaqVq2qdzWgffv2Bm+/hp+fH8aOHYu5c+dmGkO0sbtEu8ijoKioKJoyZQr16NGDnj59SkREBw8epOvXrwsuu3HjxrR7927B5WSlR48eNGbMGO3zp0+fkrOzM1WuXJnat29P5ubmFBAQIDjOF198QTt37tRb/scff1Dt2rUFl09ElD9/fjp37pze8tDQUFEmIMwNIZMwbd68OdO+LomJibR582ahm0ZERKdOnSJra2tq0aIFWVhYaLd1/vz51LlzZ1FiEBGdPXuWevTooe0X1KNHD+1s0mIwhX4oRP93DunZs6fo5xAi06lvOUi9D3L015GKZiLAzz3UarWo8dRqtc5DzBhEJjD7rtQf8O3bt5O7uzutXLmSzp07R+Hh4ToPodzc3OjUqVPa5z///DOVKVOGkpOTtc/r1KkjOI6trW2mX8x3794lOzs7weUTpSdVjRs3pjdv3miXvX79mho3bixah9icEjKLsFqt1n4ZZfTixQvRPnxffvklLV68mIh0t/Wvv/4iFxcXUWLIQY5OeaaQJJhKfRNJXx9ykCNhM4X36dSpU9k+xGL0iYjUH/Cssk2xMkIrKyuKiYnRPvf29qbx48drn9+5c0fQ1PMacrRWPHz4kNzd3cnR0ZGaNGlCTZo0IScnJ6pQoQLFxsaKEkMjMjKSgoOD6f3790REelOEx8bGUkpKikFlq1Qqevbsmd7ysLAwcnZ2NqjMT9na2tLdu3eJSPe4vXfvHllaWooSg0j6k6HUd5yYSpJgKvUtR32Yyhe41O+THC23cjH6RETqD3hMTEy2D6HkumVUrtaK+Ph4Wrt2Lf344480duxY2rx5MyUlJYlW/osXL6h58+baRFBT3wMGDNC5xGUIOW91dnFx0f4Cy3jcBgUFkbu7uygx5DgZSt3MbSpJgqnUt9T1IdclLKmTHTmOWzlabkNCQrJ9iMXoExE5PuBSat++Pfn4+FBqairt3LmTLCws6NWrV9r1f/75J1WsWFFwHDlbK6T07bffUuvWrenBgwc69R0cHEweHh6Cyvb19SVfX19SqVQ0btw47XNfX1+aN28eBQYGUmJiohi7QWPHjqUGDRrQ48ePyd7eniIjI+ns2bPk7u5Ovr6+osSQ63KAlM3cppIkmEp9S10fcuyDHMmOHMetHC23WV0R0DzEYvSJiBwf8ICAAKpXrx4VK1ZM2wqydOlS2rNnj+Cyw8PDqWDBgmRhYUFqtZqmTp2qs75Pnz70ww8/CI5DJH1rhcaNGzfo0KFDtHfvXp2HGIoUKaJtQcr4AY+OjhZtsDF/f3/68OGDKGVlJTExkQYNGkT58uUjlUpF5ubmpFarqU+fPtr+QULJdTlASqaSJJhKfUtdH3LsgxzJjpTvk5wtt2/evNF5PH/+nI4cOUJ16tShY8eOiRKDyAQSkew+4Ib2Ecjof//7HxUsWJDmzJlD1tbW2gNq06ZN1KRJE8HlExE9f/6c9uzZQxcuXNBb9+eff2o/mHlddHQ0VatWTacfTcYMWgx2dnYUERGh/b+mPi5evChKXxqN169f07p162jSpEn08uVLIiK6fPkyPXz4ULQYROl9WQ4cOEDbt2/X7pdY5GotlLKZ21SSBA1jr2+p60OOfZAj2ZHyfZKz5TYrp06dIi8vL9HKM/pEROP+/fuSfMArVaqkvX0340F77do1KlCggGhx5CJla8VXX31FHTp0oOfPn5OdnR3dvHmTzpw5Q7Vr16bTp0+LEsPb21vbamRnZ0d3796l1NRU6tq1q2jNquHh4VSoUCEqW7Ys5cuXT1vnU6ZMoW+//VaUGFn5448/qGrVqqKUJceXuNTN3KaSJGTF2Opb6vqQYx/kSHbkOG7laLnNyq1bt0RrgSYyoUSEKP3OiU/vnhAq410tGQ/aiIgIsrKyEjXWsWPHaPLkyTRw4EAaMGCAzkMoOVorChQooL2l2cHBgW7fvk1ERMePH6caNWqIEuPatWtUuHBhatOmDVlYWFCXLl2oUqVKVKRIEYqKihIlRrNmzbR3LmWs89DQUCpVqpTg8tesWUOdO3emnj17alvBNO+RjY0NDR48WHAMInlOhnL1QzHmJMGU6ltDqvqQYx/kSHY05DhuExMT6cGDB3T//n2dhxg+Ha4iLCyMDh06RI0bN6b69euLEoPIRBKR9evXU+XKlcnCwoIsLCyocuXKtG7dOlHKrlSpkrYvSMYT7YoVK8jT01OUGETpzW1qtZpq165NHTp0oI4dO+o8hJKjtcLJyUnb5Onu7k4nTpwgovSme2tra1FiEKVft5wzZw517dqVvL29acqUKfTo0SPRyndwcNAmNRnrPCYmRnDT7fz588nc3Jxq1qxJtra2ZGNjQ3PnzqWiRYvS/PnzdToqi0XKk6FS/VCMJUkwtfrOipgtO0TS7oOcCdunxHyfIiIiqEGDBpIONvbpD1fNo27dunTr1i1RYhCZQCIybdo0srW1pUmTJmkvM0yaNIns7Oxo2rRpgstft24dubi40LZt28jW1pa2bt1Kc+bM0f5fLEWLFhVlBNWsyNFa0aBBA+1lrJ49e1KbNm3o7Nmz1LdvX6pcubIoMeRQqFAhunLlChHpfrkeOXKESpQoIajs8uXLa2etPH36NKlUKmrXrh3Fx8cL2+hcEPNkKGUztykkCaZU33K17GRG7ESHSLpkR673qV69etSoUSM6ePAg/fPPPxQWFqbzEMOnw1XExsZKcjnI6BORggULUmBgoN7ywMBA0fpwbNmyhcqWLavNBl1cXLRjJIglf/78ol1ayIwcrRXBwcH0xx9/EFH6gGMVKlQglUpFBQsWpOPHj4sSY+PGjbRjxw695Tt27BBtWuqBAwdSx44dKSkpSdsP5f79++Tp6UkjR44UVLaVlZXO7dIWFhZ06dIlgVusT66ToVTN3KaSJJhKfctRH0omOkTiJDtytoDZ2NiI2iqRFSm7DGgYfSLi6OiYaTZ7584dcnR0FDVWQkJCpgPIiGHChAk0a9YsScomUq614uXLl6L22ylXrpw2icro1KlTVL58eVFivHnzhlq0aEFOTk5kZmZGrq6uZG5uTo0aNRL8JfXpvf+aREdMcp4MpWrmNpUkwVTqW+r6kOuYlTrZkbMFrFatWnTmzBnRy81I6i4DGioiInGmz1PG8OHDYW5ujiVLlugsHzduHD58+IBffvlFUPnNmjVDUFAQnJycdJa/ffsWHTt2xIkTJwwue8yYMdr/p6WlYfPmzahWrRqqVaumN8vhp/uXW4cPH0ZCQgI6deqEqKgofPXVV4iIiECBAgWwfft2NGvWTFD5ycnJsLa2RlhYGKpUqSKorOxYWVnh9u3bcHNz01keExODSpUqiTpl9dmzZ3H16lXEx8fDy8sLLVq0EFymWq3G999/DxsbGwDAL7/8gj59+sDR0VHndULqu0KFCvjpp5/Qr18/nDlzBo0bN0bbtm2xfft22NraCtr+rDx48ADXrl1DfHw8PD09Ua5cOUHlWVtbIyIiAq6urgAAS0tLnDt3DjVr1hRjcwGk18XTp09RqFAhAIC9vT2uXr2K0qVLixrDFOpb6vqQYx/8/Pwwffp0VKtWDbdv3wYRYcqUKVi5ciVGjhyJH374Ac7OzoJiyHHcapw4cQJTp07FvHnzJJsZt1ixYli4cCG+/fZbwWVlxyQSkYCAALi6uuLLL78EkD61fWxsLPr27atTOYZ82NVqNZ48eYLChQvrLH/27BlcXFyQnJxs8LY3bdo0R69TqVSCEp6svHr1Cs7OzlCpVKKU5+7ujt27d6N69eqilJeZkiVLYtWqVXpTXO/duxdDhw7Fw4cPJYsthiZNmnz2/RZa33KeDLMSFBQEX19fXL161aC/N5UkwVTqW+r6kGMf5Eh25DhuM8YCoHd8ERFUKhVSU1MFxyhQoAD+/vtvlClTRnBZ2cknaekyuH79Ory8vAAA0dHRAICCBQuiYMGCuH79uvZ1uf2yzXgCvXnzJp48eaJ9npqaiuDgYLi4uAjZdJw8eVLQ3+dUVq0V+fPnFzXOlClT8NNPP+G3334TvWyNnj17YsSIEbC3t0ejRo0AACEhIRg5ciR69OghWpzjx4/j+PHjePbsGdLS0nTWbdy40eByT506JXDLPi8xMRFWVlba5xYWFpLUx9q1a3H06FFYWFhg5MiRqFOnDk6cOIGxY8ciIiICffv2FVT+tGnTtElCUlIS5syZI2qS0KhRI9y5c0f7vF69erh7967Oa4Qm6aZU31LWhxz7EBsbq235bdiwIczNzTFz5kzRWwmlPm415Pj+GDRoEAIDAzFt2jRJ4xh9i4hU1Gq19iSU2VtkbW2NlStXwsfHR5R4cXFxSE1N1fvwvXr1Cvny5RPczCZHa4WnpyeioqKQnJyMUqVK6X3Ar1y5IjhGUlISvv32W+zcuRP58qXn0Wlpaejbty/WrFkDCwsLwTFmzpyJWbNmoVatWihWrJjel9Hu3bsFx8gpBwcHhIWFwd3dPcd/I8cvfambueVoSciL8mp9S10fcuyDHK0Vpnbcjhw5EgEBAZJ1GdAwmUQkKioK0dHRaNSoEaytrbXNU4a6f/8+iAju7u74+++/tQcvkJ6tFy5cGGZmZmJsOgDA29sbX3/9NX788Ued5WvWrMG+fftw8OBBQeVv2LABQUFBkrZW+Pr6Zvuez5gxQ7RYERERCA8Ph7W1NapWrYpSpUqJVrZc10Vzwt7eHuHh4bn6YpLjZKhEPxSlGZIk5FZerW+pybEPciQ7cnvz5g02bNiAW7duAQAqV64MHx8fvX0yVHbdB8Q8pow+EXn58iW6deuGkydPQqVSITIyEu7u7vDx8YGzszMWL16s9CbmSP78+REaGopKlSrpLL99+zbq16+Ply9fCipfjtYKUyHXddGcMOSLSQ55oR9KRnk1SciLMeQgR33kVl5M2IS8T5cuXULr1q1hbW2N2rVrAwAuXryIDx8+4MiRI9ouC8bA6PuIjB49Gubm5oiNjdX5Eu/evTvGjBkjSiISGRmJkydPZtpfYPr06YLLB9KvkaakpOgtT05OFuVOkA4dOojWKTUr7u7uuHjxIgoUKKCz/M2bN/Dy8tK7/p5TY8aMwezZs2Fra6tzp1FmxPg1I9d10bzCkJOhXP0ScsrIf0/JSo4kQer6MGQf5Oivk1tC3qfRo0ejffv2WLdunfYydUpKCgYNGoRRo0bh9OnTYm2m5Iw+ETly5AgOHz6MEiVK6CwvV64c7t+/L7j8devWYciQIShYsCCKFi2q82WuUqlES0Rq166NX3/9FStXrtRZvmbNGlF+Zfr6+gou43NiYmIy7amdmJgo6G6Wf/75R3t30j///JPl68RKtD5+/Ihff/0Vx44dk/S6aF5h6MlQrk55TFymkLTJsQ95sVUno0uXLukkIQCQL18+TJgwAbVq1VJwy3LP6BORhIQE7ckwo1evXsHS0lJw+XPmzMHcuXMxceJEwWV9Lk6LFi0QHh6O5s2bA0i/c+PixYs4cuSI4PKlaq0AgH379mn/f/jwYZ0vo9TUVBw/flxQh7CMvcPl6Cl+9epV1KhRAwB07rwCxEt2ckrueDklxx0n/0X8nuUdeT1hc3BwQGxsLCpWrKiz/MGDB7C3t1doqwxj9IlIw4YNERAQgNmzZwNI/yCnpaVh4cKFOR6nIzuvX79G165dBZfzOfXr18f58+excOFC7NixA9bW1qhWrRo2bNggeHAoQLrWCgDo2LEjgPT3vl+/fjrrzM3N4ebmJlpfnS1btqBTp06ZJp9iSE1NxcyZM1G1alXBgxuJIa+eDPNiM7fU5EgS8mp9s7yne/fuGDhwIBYtWoR69eoBAEJDQzF+/Hj07NlT4a3LHaNPRBYuXIjmzZvj0qVLSEpKwoQJE3Djxg28evUKoaGhgsvv2rUrjhw5gsGDB4uwtdmrUaMGAgMDRS1T6tYKANp+M6VLl8bFixdRsGBBQeVlZ/To0Rg8eDDat2+PPn36oHXr1qLevWRmZoZWrVrh1q1beSIROXTokODxavICqZu5TSVJMJX65padnBHyPi1atAgqlQp9+/bV9i80NzfHkCFD4OfnJ9YmysLoE5EqVaogIiICq1atgr29PeLj49GpUycMHToUxYoVE1x+2bJlMW3aNFy4cCHTYXRHjBghOIZGdHQ0Nm3ahLt372LZsmUoXLgwDh06hJIlS6Jy5coGlSlna8W9e/dEKSc7jx8/RnBwMLZu3Ypu3brBxsYGXbt2Re/evbW/CoSqUqUK7t69K8loiED65cQFCxYgKCgIMTExUKlUKF26NLp06YJx48bptPY0aNBAkm3IyBS+xPNyksD1LT5TSXSEvE8WFhZYvnw55s+frx3Ms0yZMpK1FkvJ6G/flVp2X0YqlUpQ34qMQkJC4O3tjfr16+P06dO4desW3N3d4efnh0uXLmHXrl2CypejtQKQbkTSzLx//x67d+9GYGAgjh07hhIlSmg/kEIEBwdj8uTJmD17NmrWrKl3q7OQweWSkpJQr149XL9+Hd7e3qhYsSKICLdu3UJwcDC8vLxw+vRpvYRXSqZwW+rZs2fxxRdf5LpfWG6SBEP8V+vb0PrIKTn2QY7OqlK/T8bC6FtEIiMjsXfvXu1JxN3dHR07dhTt16wcv/IBYNKkSZgzZw7GjBmj09GoWbNmWLVqleDy5diPz41IKjYbGxu0bt0ar1+/xv3797WD+gjVtm1bAED79u119kGMORxWr16Nhw8fIjw8HBUqVNBZd/v2bTRp0gRr1qzB8OHDDY6RW3n1coDULQlJSUlo3LixNkn4+uuvtUnC3LlzcejQIcFJginVd15q2ZHjmDX0N7rU71NOR/MW+4eflIy6RWT+/PmYPn060tLSULhwYRARnj9/DjMzM8ybNw/jxo1TehNzzM7ODteuXUPp0qV1sv2YmBhUrFgRHz9+FBxD6tYKuUYk1bSE/P777zh+/DhcXV3Rs2dP9O7dW68HuSFCQkKyXd+4cWODy27cuDG6deuGoUOHZrp+5cqV2LVr12e34XOk/qWfW7n9BStHS4KmWTskJCTLJGHKlCmCkgRTqW856iOvHbOGtFbI8T6p1WqUKlUKnp6e2SZLck5FIRgZqRMnTpBaraYZM2bQq1evtMtfvnxJ06ZNIzMzMwoJCTGo7NGjR1N8fLz2/9k9xOLi4kKhoaFERGRnZ0fR0dFERBQUFETu7u6Cy/f19SW1Wk21a9emDh06UMeOHXUeYsifPz9FRUWJUlZWunfvTra2tlSoUCEaOnQonTt3TtJ4YitYsCBdv349y/XXrl2jggULCoqRmJhINWvWJEtLS+rYsSNNmjSJJk6cSO3btycLCwv68ssvKSkpSVCM3LK3t9ce0zmxbNkyKlKkCN2+fVtv3a1bt6hIkSK0YsUKQdvUqFEjWrVqVZbrV6xYQY0aNRIUw1TqW+r6kOuYjY+Pp2nTplHlypXJ1taW7OzsqGrVqjRz5kxKSEgQXL4cx+2PP/5Izs7OVKNGDVq+fDm9fPlSUHl5gdEmIt26daPvv/8+y/Xfffcd9ejRw6CymzRpQq9fv9b+P6tH06ZNDSo/o5CQEEpKSqKxY8dSgwYN6PHjx2Rvb0+RkZF09uxZcnd3J19fX8FxihYtSgEBAYLLyc6ECRNo1qxZksbo1asXHThwgFJSUiSNc/r0aerduzfVrVuXHj58SEREAQEBdObMGUHl5suXjx4/fpzl+kePHpG5ubmgGHKcDHMrY3KdE6aSJJhKfUtdH3LsgxzJjhzHLRHRx48fKTAwkFq0aEE2NjbUtWtXCg4OprS0NMFlK8FoExE3N7dsvxROnz5Nbm5uMm6RYdRqNT19+pQSExNp0KBBlC9fPlKpVGRubk5qtZr69OkjypeuHK0VI0aMICcnJ2rUqBENGzZM9NajpKQkatasGUVERIiwtVnbtWsXWVtb06BBg8jS0lL7Bbpy5Ury9vYWVLZaraZnz55luf7JkyekVqsFxZDrZJgbZ86coY8fP+b49aaSJJhKfUtdH3LsgxzJjhzH7adiYmLI19eX3N3dqWTJkvTu3TtRy5eD0XZWffr0Kdzc3LJcX7p0aTx58kS+DTIQ/f9rfBYWFli3bh2mTZuG69evIz4+Hp6enqIMZgbIM3+K1COSmpub4+rVq4LL+Zw5c+ZgzZo16Nu3L7Zt26ZdXr9+fcyZM0dQ2USE5s2b6wzLnFFm8w3l1s2bN9GkSZMs1zdt2hSzZs0SHEfKTnlv3rzRGwU4owIFCiAuLs7gbQfSx7/JbgwatVotqGMyYDr1LXV9yLEPQUFBmDZtml5/IACoWLEipkyZgl27dgnqEyTHcfsptVoNlUoFIhJ8vCrFaBORjx8/wsLCIsv15ubmSEpKknGLDJfxS7pkyZIoWbKk6DHkmD9FjuHX+/Tpgw0bNkg6YM+dO3fQqFEjveWOjo548+aNoLJnzJjx2dd07txZUAw5ToZS33FiKkmCqdS31PUhxz7IkezIcdwC6SNiBwUFYePGjTh79iy++uorrFq1Cm3atIFarRZcvtyMNhEBgPXr18POzi7Tde/evZN5awzXv3//z/bMDgoKEhRD7vlTNMPGfzoZoVApKSnYuHEjjh07lukYH2IkVEWLFkVUVJRei9vZs2cFjymQky8moeQ4GUp9W6qpJAmmUt9S14cc+yBHsiPHcfvjjz9i27ZtcHV1hY+PD7Zu3Sr5+FBSM9pEpGTJkli3bt1nX2MM7O3tYW1tLWkMOVor0tLSMGfOHCxevBjx8fEA0vdt7NixmDJliiiZ+vXr1+Hl5QUAiIiI0FknVkL13XffYeTIkdi4cSNUKhUePXqE8+fPY9y4cZJe2hKLHCdDqZu5TSVJkIMpJG1y7IMcyY4cx+2aNWtQsmRJuLu7IyQkJMtbv4X+eJWTUY8jYgrUajWePHmCwoULyxZTqtaKyZMnY8OGDZg5cybq168PIL0VwdfXF9999x3mzp0rajypEBHmzZuH+fPn4/379wAAS0tLjBs3Tju5oqE8PT1zlDBduXLF4BgzZ87M0euEfBEXKlQIp06dynLqgevXr6Np06Z4/vy5wTFMganUt9Tk2Ae1Wo0qVapkm+zcuHEjz/ez6N+/f46OqU2bNsmwNeL4zyQiVatWxcGDB+Hq6prrv42OjsayZcu0I3d6eHhg5MiRKFOmjODtMjMzw+PHjyVPRORorShevDjWrFmD9u3b6yzfu3cvfvzxR/z777+CY2hERUUhOjoajRo1grW1tXbUUzElJSUhKioK8fHx8PDwyPIyYG6YwpcGkN4H68GDByhatGim6x8/foxSpUrl6X5anCT8t/xX6+Lhw4coXrx4nu47YrSXZnIrJiYGycnJuf67w4cPo3379qhRo4b2V35oaCgqV66M/fv3o2XLloK2S648cMqUKdpOnp+2Vnz8+FGU1opXr15lOrJpxYoV8erVK8HlA8DLly/RrVs3nDx5EiqVCpGRkXB3d8fAgQPh7OwsygR+Pj4+WL58Oezt7eHh4aFdnpCQgOHDhwsahXbGjBkgIjx48ACFChWS/JKcVKRu5pYjSdBMCCklU6lvOepDanIkGHnxffLw8JB8zhyh/jOJiKEmTZqE0aNH692lMWnSJEycOFFwInLy5Enkz58/x683tGVn8+bNWL9+vU5rRbVq1eDi4oIff/xRlESkevXqWLVqFVasWKGzfNWqVahevbrg8gFg9OjRMDc3R2xsLCpVqqRd3r17d4wZM0aURGTz5s3w8/PTmfMHAD58+ICAgADBw+ETEcqWLYsbN26Idnt2RnKcDKW+pm9KSYIp1LfU9ZEXv8ANIcdxm1vGcNGDE5HPuHXrFnbs2KG33MfHB8uWLRNcfm7nLTG0ZUeO1oqFCxeiXbt2OHbsGOrWrQsAOH/+PB48eICDBw+KEuPIkSM4fPiwXv+WcuXK4f79+4LKfvv2LSh9kD+8e/cOVlZW2nWpqak4ePCgKJfQ1Go1ypUrh5cvX0ryxSTXl/jnCOmUZypJAmA69S1lfcixD3IkO6bSAiY3TkQ+o1ChQggLC9M7gYSFhcnawVQoOVorGjdujIiICPzyyy+4ffs2AKBTp0748ccfUbx4cVFiJCQkZDr51atXrwRPpe3k5ASVSgWVSoXy5cvrrVepVDm+zvw5fn5+GD9+PFavXo0qVaqIUqaGHCdDOZq5TSFJ0DD2+gakrQ859kGu1go5jltTw4nIZ3z33Xf4/vvvcffuXdSrVw9Aeh+RBQsWYMyYMQpvXc7J0VoBpHdYlfLumIYNGyIgIEB794pKpUJaWhoWLlyIpk2bCir75MmTICI0a9YMf/zxh84lMwsLC5QqVUq0hKpv3754//49qlevDgsLC70Tr9BWKlM4GZpCkqBhCvUtdX1IvQ9yJWxyHbemhBORz5g2bRrs7e2xePFiTJ48GUD6l62vry9GjBih8NblnJStFZGRkZg+fTrWrl0LBwcHnXVxcXEYMmQI5syZI0pnqYULF6J58+a4dOkSkpKSMGHCBNy4cQOvXr1CaGiooLI1l8nu3bsHV1dXSXuZi3FZLztSnwzluqZvCkkCYPz1rSFlfcixD3Il6HIct6bkP3P7rmbwF0Nu39XQjNb6aSdGOdnb2yM8PDxP9YD+/vvv4eTkhIULF2a6fuLEiXj79i1Wr14tSry4uDisWrUK4eHhiI+Ph5eXF4YOHYpixYqJUj6QPgrj33//jWfPniEtLU1nXd++fUWLI6X9+/dj4cKFkpwM5boV0tnZGe/fv0dKSopkScLmzZuzXd+vXz/BMeQgZX1rSF0fcuxD5cqVsWHDBnz55ZeSlA/Ic9zmlJmZmfbuwrzqP5OI5MUvcEPkdj/kaK2oUKECtmzZgi+++CLT9ZcvX0avXr1w584dg2PIaf/+/ejduzfi4+Ph4OCg88tfpVKJdhKJjo7Gpk2bEB0djeXLl6Nw4cI4dOgQSpYsmeVAYbkh9clQjmZuU0kSAOOvb0D6+pBjH+RIdvLScWsMiQhfmslC06ZNP9v0rFKpcPz4cZm2KF2hQoVyNZHYzz//DFdXV70kBEifxM3V1RU///yzoNaK2NjYbDvuFixYEA8ePDC4fAB48eIFEhISUKpUKe2yGzduYNGiRUhISEDHjh3Rq1cvQTE0xo4dCx8fH8ybNy/TjrFiCAkJgbe3N+rXr4/Tp09j7ty5KFy4MMLDw7Fhwwbs2rVLcAypLwfI0cwt1wlb6iTBFOobkL4+5NgHOS7F5aUEWapzmJg4EcmCZoK4zLx79w6BgYFITEyUb4P+v+fPn+fq9t2QkBBs2bIly/XdunUT/AXu6OiI6OhonSQho6ioqEwTodwYPnw4ihcvrh0n5NmzZ2jYsCGKFy+OMmXKoH///khNTcW3334rKA4A/PvvvxgxYoSkH+BJkyZhzpw5GDNmjM6lvmbNmmHVqlWixJD6ZChXvwRTSBJMob41pKwPOfZBjmQHkP64NSn0H2FnZ0fR0dGCykhOTqZly5ZRoUKFqGzZsrR161aRti7ncrsfVlZWFBMTk+X6mJgYsra2FrRNXbt2pY4dO2a5vn379tSlSxdBMdzc3OjUqVPa5z///DOVKVOGkpOTtc/r1KkjKIbGN998Q9u3bxelrKzY2trS3bt3iUi3Tu/du0eWlpaixYmKiqIpU6ZQjx496OnTp0REdPDgQbp+/boo5e/bt48aNGhA165dE6W8T506dYqsra2pRYsWZGFhoX2f5s+fT507dxYlxpdffkmLFy8mIt26+Ouvv8jFxUWUGKZS33LUh9T7IAc53qecEuO7T2qciOTQli1byN3dnYoVK0a//PKL9gtQbrndjyJFitDx48ezXH/s2DEqUqSIoG26cuUKWVpaUufOnemvv/6iN2/e0Js3b+jChQvUqVMnsrS0pMuXLwuK8WlC5e3tTePHj9c+v3PnDuXPn19QDI3169dTyZIlacaMGbRr1y7au3evzkMMLi4uFBoaSkS6dRoUFETu7u6ixJDjZOjk5EQWFhakVqvJysqKnJ2ddR5CmUqSYCr1LXV9yPUFLnWyI8dxm1OciOQhhlbGoUOHqHr16uTg4ECzZs2i+Ph4CbYu53K7H3K0VhAR7d+/nwoVKkRqtVrnUahQIVG+vAsXLkxhYWHa5wUKFKBdu3Zpn0dERJCtra3gOEREKpUqy4darRYlxtixY6lBgwb0+PFjsre3p8jISDp79iy5u7uTr6+vKDHkOBn6+/tn+xDKVJIEU6lvqetDjn2QI9mRqwUsJ+zt7TkRkdrmzZvp48ePessTExNp8+bN2ue///57rpKIv/76i5o0aUJWVlY0atQoev78uSjbK1RuExE5Wis03r9/T0FBQbRw4UJasGAB7d69mxISEkQpu3379uTj40Opqam0c+dOsrCwoFevXmnX//nnn1SxYkVRYskhMTGRBg0aRPny5SOVSkXm5uakVqupT58+lJKSIkqMvHQyNJSpJAmmUt9S14cc+yBHsiPHcZtT3CIiA7VarW1ay+jFixeCfr2qVCqysbGhUaNG0fLly7N8yM2Qg0rq1orcqlKlCsXGxubqb8LDw6lgwYLaywBTp07VWd+nTx/64YcfxNxMWdy/f58OHDhA27dvp4iICFHLlutkKGUzt6kkCRrGXt9S14cc+yBHsiPHcZtTsbGxoh/HYjP6cUTUajWePn2KQoUK6SwPDw9H06ZNDb4Vy83NLUe37969e9eg8j8VEBCA7t27682XkpSUhG3btmkH0QoMDESHDh1ga2ubq/I/fPiA4OBgREVFgYhQvnx5tGrVSpFbuwwd0+XFixcIDQ1F0aJFUadOHZ11Bw4cQOXKleHm5mbwdn06D09WjGVE3XHjxuGvv/7Czp07Ub58eVy5cgVPnz5F37590bdvX1Hmi/n0jpNbt27B3d0dfn5+uHTpkuA7TpKSkjB06FD4+/sjNTUV+fLlQ2pqKnr16gV/f3+YmZkJ3geN2NhYXL9+HfHx8fD09DS64bnlqG+p60OOfShRogR27NiBevXq6ZyLdu/ejXHjxiE6OlpwDDmO248fP2LlypU4efJkpgMv5vWZijMy2kREM8R0eHg4KleurDMdeWpqKu7du4c2bdpkOnNuXmRmZobHjx/rjcfx8uVLFC5cGKmpqbJsR9WqVXHw4EFBI9B+jpDB5XKasBmidOnSn32NWMknEWHXrl1ZnkSCgoIEx5DjZFi3bl107dpVe1uqpl7//vtvdOrUCQ8fPhQcAzD+JMFU6ltDqvqQYx/kSHY0pDxue/fujSNHjqBLly4oUqSI3g9nOSamFIvRJiKaIaZnzpyJsWPHws7OTrvOwsICbm5u6Ny5MywsLGTZHqFf4FK17OSWHCPQComRVxI2oUaOHIm1a9eiadOmmZ5ENm3aJFosKU+GdnZ2uHbtGkqXLq1TrzExMahYsSI+fvwoWiypyJEkmEp9y0XKfZAzYZOSo6MjDh48iPr16yu9KYIZ7YBmmmzPzc0N3bt3h5WVlaLbExMTk6uBxjQ0LTsqlQrNmzfPsmWHpSOiTC+ZPXz4EI6OjrJui5Dk87fffkNQUBDatm0rwZbpKlmyJEqWLClJ2U5OTnj8+LFea9I///wDFxcXweXLkSSMGjUq2yRBDKZS33LUByDtPlhYWGDdunWYNm2aZMmOHO+Ti4uLovOeicloExGNvDSUriE6duwIAAgLC0Pr1q2zbNn5r8uLCZuhySeQ/mtG6rkf5DgZ9ujRAxMnTsTOnTuhUqmQlpaG0NBQjBs3TpTJAU0lSTCV+pa6PuRKdABpkx05jtvFixdj4sSJWLNmTZajWhsLo09EUlNTsXTpUuzYsQOxsbFISkrSWS/nLIeGyGstO3mVqSVsvr6+mDlzJjZu3CjZhHFynAznzZuHoUOHwtXVFampqfDw8NA2c0+dOlVw+aaSJJhKfUtdH3LsgxzJjhzHba1atfDx40e4u7vDxsZGbw6yvP7dl5HRJyIzZ87E+vXrMXbsWEydOhVTpkxBTEwM9uzZg+nTpyu9eTlm7C07uZHbifsA00vYunXrhq1bt6Jw4cJwc3PTez/E6PEux8lQ6mZuU0kSTKW+pa4POfZBjmRHjuO2Z8+e+PfffzFv3jzJ9kMuRp+I/P7771i3bh3atWsHX19f9OzZE2XKlEG1atVw4cIFo7nV0thbdnIjtxP3ZdSvXz+8efMGW7ZsQXR0NMaPH4/8+fPjypUrKFKkiCj9EuTQr18/XL58GX369DHqk6GGVM3cppIkmEp9S10fcuyDHMmOHMftuXPncP78eVSvXl2S8uVk9InIkydPULVqVQDpPfjj4uIAAF999RWmTZum5KblSl5p2TGktUJOV69eRYsWLeDo6IiYmBh89913yJ8/P4KCghAbG4uAgAClNzFHDhw4gMOHD6NBgwaSxZDjZCh1M7epJAmmUt9S14cc+yBHsiPHcVuxYkV8+PBBcDl5gdEnIiVKlMDjx49RsmRJlClTBkeOHIGXlxcuXryoN9aEIXI6bsXatWtRpEgRg+PklZYdIa0Vchg9ejT69++PhQsX6vQYb9u2LXr16qXgluWOq6srHBwcJI0hx8lQ6mZuU0kSTKW+pa4POfZBjmRHjuPWz88PY8eOxdy5c1G1alW990rq401MRp+IfPPNNzh+/Djq1KmD4cOHo0+fPtiwYQNiY2MxevRoweUPGDAAbdq00Ru34t27dxgwYIA2ERH6JWgqLTtSu3TpEn799Ve95S4uLnjy5Ims2yKk9Wjx4sWYMGEC1qxZI2g02OzIcTKUupnbVJIEU6lvqetDjn2QI9mR47jV3CXYvHlzneWaIQ6MZUwlwAQSET8/P+3/u3fvjlKlSuHcuXMoV64cvv76a8HlyzVuhdQtO6bC0tISb9++1VseERGhNxic1IS0HvXp0wfv379HmTJlJOvxLsfJUOpmblNJEkylvqWuDzn2QY5kR47j9uTJk5KWLyejT0Tmz5+PIkWKwMfHBwDw5Zdf4ssvv8TGjRuxYMECTJw40aBy5R63QuqWHVPRvn17zJo1Szt0v0qlQmxsLCZOnGhUt+8uW7ZM8hhynAylbuY2lSTBVOpb6vqQYx/kSHbkOG4bN24sSblKMNoh3jXc3NwQGBiIevXq6Sz/66+/0KNHD9y7d8+gcpUeQv7ChQuituzklBzzwBg6cR8AxMXFoUuXLrh06RLevXuH4sWL48mTJ6hbty4OHjxoUJmGkmM4fCEOHDiAlStXSnoy/PDhA7755huEhoZK0szt7OyM9+/fIyUlRbIkYfPmzdmuN5Zb6+Wob6nrQ459qFixInbs2IFq1apJUj4gz3F7+vTpbNc3atRIcAy5GH0iYmVlhVu3bukNMX337l14eHgImusiNTUVW7ZsQatWrVCsWDGhm5qtT1t2NDZu3Ijnz58b3LKTW8YyD8zZs2dx9epVxMfHw8vLCy1atBCt7JwSmoikpqZiz549uHXrFgCgcuXKaN++vWhzXchxMuzWrRtOnjwp2cRbppIkAKZR31LXhxz7IEeyI8dxq1ar9ZZl/PwZUx8Ro09EypUrhxkzZqBPnz46y3/77TfMmDFD8EypWSU6YpOqZUdDjtaKvDJxn1yEJCJRUVFo27Yt/v33X1SoUAEAcOfOHbi6uuLAgQMoU6aM4O2T42Roa2sreTO3HKROEkylvqUmxz7IkezIQXNDg0ZycjL++ecfTJs2DXPnztXrxJqXGX0isnDhQixcuBA///wzmjVrBgA4fvw4JkyYgLFjx2Ly5MmCyq9VqxYWLFggeaVK2bIDSNtaoelPEx4ejsqVK2fZn0bTr0Oo48eP4/jx45mOW7Fx40ZRYuSEkESkbdu2ICL8/vvvyJ8/P4D0uujTpw/UajUOHDgg9uZKQo5mblNIEkylvgHp60NqciVsSr1PISEhGDNmDC5fvixpHDEZfSJCRJg0aRJWrFihHY3UysoKEydOFGUgsODgYEyePBmzZ89GzZo19VoKxOpYJXXLjpStFXL2p5k5cyZmzZqFWrVqoVixYnqXAnbv3i04hhytR7a2trhw4YL2lm2N8PBw1K9fH/Hx8YbvQAZSnwylbuY2lSTBVOpbjvow9kQHkOd9ysrt27dRq1Yt0Y4pWZCJePfuHf3999907do1+vjxo2jlqlQq7UOtVmsfmudiWbBgARUoUIA2btxIMTExFBMTQxs2bKACBQrQvHnzDC63Ro0a5OnpSWq1mqpWrUqenp7aR7Vq1cje3p66du0qyj74+/vThw8fRCkrK0WLFqWAgABJY6jVanr69Kne8hcvXohW587OzhQaGqq3/OzZs+Ts7CxKjMjISCpXrhzZ2Nho69zGxoYqVKhAUVFRosRwcnIiCwsLUqvVZGdnR87OzjoPoby9valNmzb08uVL7bIXL15QmzZtqG3btoLLJyKysbGhq1ev6i0PCwsjW1tbUWKYSn1LXR9y7AMRUUpKCu3atYtmz55Ns2fPpqCgIEpJSRGtfDmO2/DwcJ1HWFgYHTp0iBo3bkz169cXJYZcjL5FRGohISHZrhfrFiqSqGVH6bt/xFagQAH8/fffkv6ikKOvS9++fXHlyhVs2LABtWvXBpDeH+i7775DzZo14e/vLziGHL/0pW7mlqMlIX/+/Pjzzz/1+meFhobi66+/5vrOQOr6kGMf5GitkOO4VavVUKlU+PQrXDN8RcWKFQXHkI2CSRDLhFQtO3K0VqSkpNDPP/9MX3zxBRUpUkT0X8dERBMmTKBZs2aJUtan5Gw9ev36NbVv355UKhVZWFhoWxU6duxIr1+/FiWGHL/0pSZHS8K3335LlStXpgsXLlBaWhqlpaXR+fPnqUqVKtSvXz9RYphKfUtdH3LsgxytFXIct5qWc80jNjZW8nO8VIx+QDM5vHnzBhs2bNC5Zunj4yPqyKoadnZ2+OKLL0QvV44e83JM3Pfx40f8+uuvOHbsGKpVq6bX433JkiUGl92xY0cAQFhYGFq3bp1l65EYnJycsHfvXkRFRWmPq0qVKqFs2bKilA+kj0L77t07veXx8fGitoBJeU3/q6++wvfff6/XkjB48GC0b99ecPkAsGLFCvTr1w9169bVHk8pKSlo3769aAORmUp9S10fcuxDSEgILly4oG1xAdJbWv38/FC/fn1RYshx3JYqVSrPdNwXTOlMKK+7ePEi5c+fn1xcXOibb76hb775hkqUKEEFChSgy5cvK715OSZHa4W7uzv9+eefRERkZ2envaa7fPly6tmzpygxmjRpkuWjadOmosSQo/Vo5syZlJCQoLf8/fv3NHPmTFFiyPFLX+pr+nK0JGhERkbSvn37aN++fRQZGSlq2aZS31LXhxz7IEdrhRzHra+vL6nVaqpduzZ16NCBOnbsqPMwJpyIfEaDBg2of//+lJycrF2WnJxM/fr1o4YNGyq4Zbkzbdo0KlasGC1atIisrKxo9uzZNHDgQCpQoAAtX75clBg2NjZ0//59IkrvVKpJ1KKjo8nBwUFw+SkpKRQSEkKvXr0SXJbS5OgQK8fJUI5mbiLjTxJMpb41pKoPOfZBjmRHQ8rjVo6O+3LhROQzrKys6NatW3rLb9y4QdbW1gpskWHkaK0oX748XbhwgYiI6tevT/Pnzyciom3btlGhQoVEiWFpaUl3794VpaysyNF6pFKp6NmzZ3rLjx8/TgULFhQlhoaUJ0Opr+mbSpJgKvUtR30QSbsPciQ7crxP+fPnF/VOIiVxIvIZhQsXpsOHD+stDw4OpsKFCyuwRYaRurWCiGjixIk0d+5cIkpPPvLly0dly5YlCwsLmjhxoigxatasSceOHROlrKxI2Xrk5OREzs7OpFartf/XPBwcHEitVtOPP/4oyn7IcTKUupnb2JMEU6tvqetDrkSHSNpkR47jVsqO+3LjROQzhg8fTiVKlKBt27ZRbGwsxcbG0tatW6lEiRI0cuRIpTcvx+RorfjU+fPnafHixbRv3z7Ryjx06BDVqFGD9u/fT48ePaK4uDidhxikbD3y9/enTZs2kUqlouXLl5O/v7/2ERgYSOfOnRO8/RpynAylbuY29iTB1Opb6pYdOfZBjmRHjhawESNGkJOTEzVq1IiGDRtGo0eP1nkYE05EPiMxMZFGjBihbb5Tq9VkaWlJo0aNEvX2WqnJ0VohBzkGmJOj9ejUqVM6/Y6kIMfJUKpmblNLEoy9vuVq2ZHjmJUy2ZGzBUyOjvty4dt3P8PCwgLLly/H/PnzER0dDQAoU6YMbGxsFN6y3PHz89P+v3v37ihVqhTOnTuHcuXK4euvvxYlhhwzCJ88eVJwGZ9TokQJPH78GCVLlkSZMmVw5MgReHl54eLFi3rDvhvK3t4et27d0g54tHfvXmzatAkeHh7w9fUVdKuis7MzVCoVVCoVypcvrzcjZ3x8PAYPHix4HwDpbktdtmwZiAg+Pj6YOXOmzq3ymlup69atKyiG5pb20qVLo379+jpzJInN2Otb6vqQ85glIr2pIYD0wcYy3tJrCDmOWw05zoVy4ZFVc+HBgwcAAFdXV4W3JG+SegZhuUyaNAkODg746aefsH37dvTp0wdubm6IjY3F6NGjdZI6Q33xxReYNGkSOnfurJ3YsFOnTrh48SLatWsnaPyKzZs3a0+Gy5Ytk/RkOGvWLIwbN04vMf/w4QN+/vlnwePHhISESJ4kXLlyBebm5pIkCRqmUt9S1Ycc+6BJduLi4uDg4JBlsvPLL78IigPIc9yaFMXaYoxEcnIyTZ06VdusplarycHBgaZMmUJJSUlKb16OzZs3jzZs2KC3fMOGDeTn5ydKjKzuaImOjiZLS0tRYhARnT59mnr37k1169alhw8fEhFRQEAAnTlzRrQYGUnR18XBwUHb98TPz49atWpFROmdPEuUKCFKDDkuB0h9Tf/y5cs6d+Xs2bOHOnToQJMnT6bExETB5RMR1apVi3bt2kVE/3es9uzZk8qWLStaPzBTqW+p60PKfZDzUpwcx60p4UTkMwYPHkyFCxemNWvWaCcXWrNmDRUtWpQGDx6s9OblWKlSpTK9u+HChQvk5uYmSoyyZcvSb7/9prc8ICCASpcuLUqMXbt2kbW1NQ0aNIgsLS0pOjqaiIhWrlxJ3t7eosSQI2mzt7eniIgIIiJq0aIFLVu2jIiI7t+/T1ZWVqLEkONkKPU1fVNJEkylvqWuDzn2QY6ETY7j1pRwIvIZDg4OdPDgQb3lBw4cEK3johzkaK2QagbhjGrUqEGbN28movQ7WjSJyJUrV6hIkSKixJAjaWvatCn1/X/t3XtQVOf5B/DvLggLAkZxETXEKxo1OLWtjWm0aTStdjTeFcVEq8a0sVFTjaDxBrEVr0mlk4nMRBS0jFqbq5eaFo01GGLitRO1Kgo0HRCDI4qiIDy/Pxz2l82yWWDPec/u4fuZ2Un2HNz3ec/z7uHhPbepUyUrK0tatGjhuHzwk08+kU6dOmnShp47Q1Un5ZmlSPD3fNfROx8q+qCi2FExbs2EhYgHdrtdzp4967L87Nmzmt+ISE8qZitqa2slMTFRbDab4zBWaGioptf/h4SEyJUrV0TEuRDRsqBSUbSdPn1aHnvsMYmIiJDk5GTH8pdfflmzG8zpuTNUNc1tliLB3/NdR+98qOiDimJHxbg1ExYiHqSkpMjkyZOdLtW9e/euTJkyxWmH4utUzFbU0esJwiIiXbp0kX/84x8i4lyIZGZmSq9evTRpQ0XR5k5lZaVm5x6p2BnqPc1tliLBHX/Lt975UNEHFcWOinFrJixEPBg9erSEh4dL27ZtZciQITJkyBBp27atREREOB6CV/fyZSpmK1RYtWqV9O7dW/Ly8iQ8PFyOHDki27dvF7vdLmlpaZq0obJo05OKnaHe09xmKRJUMEPRpqIPKoodI8etP+Llux5Mnz69wT+7ZcsWHSPRRkVFBc6dO4eQkBDExsZqdl8MVUQEq1atQmpqKu7cuQPgwaPDX331VaxcuVKzNhYtWoS0tDRUVVUBAGw2G5KSkry+HLWO1Wqt914GdWpqarxu48yZM5gyZQqKioowf/58rFixAgAwZ84clJWVITs72+s29Lws9fvcvXsXAQEBaNGihS6frzWz5NsdrfKhog+DBw9GTEwMnnnmGcycORNnz55F9+7dcfjwYUybNg0FBQVet+GOv41bVViIkF+qqqrCpUuXUFFRgd69eyMsLEzzNvQs2j744AOn99XV1Th58iQyMzORkpKCmTNnatbWd2m5M2zVqhVOnDiBbt26Yc2aNTh48CAOHDiA3NxcTJo0yXHvHV+mokgwS76NomUfjCzYqH4sRBqotLQU//nPfwAAPXv2RFRUlMERNU8zZszAxo0bER4e7rT89u3bmDNnDjIyMgyKTBvZ2dnYuXOnyy8uXxUREYHjx48jNjYWv/jFLzBixAjMmzcPRUVF6NmzJyorK736fLMXCf6WbxX5MIqWxY6Zt5MeWIh4cPPmTfzud7/Djh07HIMnICAA8fHxeOutt5zuAEj6CwgIQHFxsUsh+M033yA6Ohr37983KDJtXL58GX379kVFRYXXn6ViZ6j3NLfZiwR/y7fe+TDLL3Ajx60/4v1nPZg1axZOnjyJPXv2OG4x/Nlnn2HevHn4zW9+gx07dhgcYfNw8+ZNyIOTq3Hr1i3YbDbHupqaGuzbt8/vZ6kqKyuRlpaGjh07avJ57733ntP77+4MtfCnP/0JU6ZMwfvvv48lS5Y4njGze/dul1v9N8WoUaNclo0fPx59+vTBzp07dd2hDxgwAC+++KJun++P+dY7Hyr6oKLYMXLc+iPOiHjQsmVLHDhwAAMHDnRafuTIEQwbNgy3b982KLLmxdPOw2KxICUlBUuWLFEYVdPVPfeiTl2BFRoaiu3bt2PkyJG6ta3iL329z0vQciahPpWVlVi8eDH279/vOCTrDbPnW+98aNkHI2cr9N5O/oozIh5ERkbWe/ilVatWaN26tQERNU+HDh2CiGDw4MH429/+5vSUzKCgIHTq1AkdOnQwMMLG+e7VJFarFXa7HY8//rju40rvv/QBOM1YaU3rmQRPRYIWzJxvrfNRHy37YNRshYrt5K9YiHiwdOlSzJ8/H9u2bUN0dDQAoKSkBAsXLsSyZcsMjq75eOqppwAAV65cQUxMDKxWq8EReafuEfSqab0z1Hua2yxFglnyrSIf36XqF7iWxY4R28mfsRDx4O2338alS5fwyCOP4JFHHgEAFBUVITg4GNeuXUN6errjZ0+cOGFUmM1Gp06dcOPGDRw7dgylpaWora11Wj916lSDImuYixcvYvny5UhPT0dERITTuvLycrz00kv4wx/+gK5du3rdloqdod7H9P29SDBbvvXOh1G/wLUudoycAfNHPEfEg8bsTOuuRyf9fPTRR5gyZQoqKioQERHhtNOyWCy4fv26gdF59uKLL+Khhx7C2rVr612flJSEmzdv4u233/a6rczMTKf3KneG/nBZqooiobnkWysq+mDk+TrkhqI7uBJpIjY2VubNmye3b982OpQm6dGjhxw7dszt+i+//FJ69OihMCJ95OfnS8uWLZv87y9cuCCTJk2S8vJyl3U3btyQyZMnO54z1FSzZs2ShQsXul2fmJgov/3tb71qwyz5VpEPVb79gMatW7dKVlaW7N+/X65fv+71Z5tpO6nk3wfaqdn53//+h7lz5yI0NNToUJqkqKjoey8zbtu2rdd3I7148SImT56MmzdvuqwrLy9HQkICLl++7FUb30eLae5169YhJibGZaYCeHCieExMDNatW+dNmDh8+DAmTJjgdv3EiRNx8OBBr9owS771zofKMTtt2jSn1/PPP49hw4ZpMuOiYtyaEQsRD6xWKwICAty+SK2hQ4fiyy+/NDqMJmvVqhXy8/Pdrr906VK9O7HGULkzbN26Ndq0aeN4tW7dGuHh4cjIyPCqDbMUCWbJt975UNEHFcWOinFrRjxZ1QMVN9ihhhs+fDgWLlyIs2fPIi4uzuU+Fb5+fPdnP/sZ/vznP2Pw4MH1rk9LS8OgQYO8auPw4cPfe2LfxIkTkZCQ4FUbdfQ6KU9lkdCpU6d612tRJJgl33rnQ0UfGlrseHO+jopxa0pGHxvyV3/5y19k5MiRRofR7FgsFrcvq9VqdHgenThxQoKDg2XcuHHy+eefy40bN+TGjRuSl5cnY8eOleDgYDl+/LhXbdhsNikoKHC7vqCgQEJCQrxqQ2/t2rWTnJwct+v/+c9/Srt27bxqY8KECTJ69Gi360eOHCnjx4/3qg2z5FvvfKjog4rzdVSMWzNiIdJE3p6MR83XRx99JHa7XaxWq9PLbrfLBx984PXnq9gZ6n1SnlmKBBFz5FvvfKjog4piR8W4NSMWIk1w584dmTdvnl+c7U6+6c6dO/Luu+/K2rVrZc2aNfLee+9pdiWQip2h3lecmKVIqOPv+dY7Hyr6oKLYUTVuzYb3EfGA15z7hrS0tAb93Ny5c3WORK24uDjs27cPMTExDf43J0+exBNPPIERI0YgMTERPXv2BACcP38ea9euxd69e3H06FH88Ic/bHJcPXv2xPbt29G/f/961x8/fhwJCQlePadlz549mDFjBsrKypyWR0ZG4p133tHsu1dZWYm///3vuHTpEkQEPXr0wC9/+UtDrszy1XwD+uZDRR8mTpyI6upql/P+6owaNQpBQUH461//2uQ2AHXj1kxYiHhghpsEmUGXLl08/ozFYtH1slQjhIeH4/Tp042+qZbeO8OQkBCcP3/e7YmehYWF6NWrF+7cueNVO/5eJDSWr+a7jp750LsPqgo2wLfGrT9gIULkw5r6iwnQd2cYHR2N7Oxst1eD5OTkYMqUKSgpKfG6rYbw5SJBVRu+9MuvqfnQuw++NluhYtz6A16+68Y333yD27dvO/3F99VXX2H9+vW4ffs2Ro8erdklkKQ9fsEfzFqMGTPG4881ZVupuCy1MQoKClBdXa2sPV+kZ74bq6n50LsPI0aMQGFhoc8UbBy3D7AQcWPOnDno0KEDNmzYAAAoLS3FoEGD0KFDB3Tr1g2//vWvUVNTg+eff97gSKk+/II3XFO21eLFi/HEE09g/Pjx9U5zHzhwAEePHtUjXPKSGb4b3vTBlwo2eoCFiBt5eXnYunWr431WVhbatGmDU6dOITAwEOvXr8dbb73FQoSapX79+mH37t2YMWOGy8l/kZGR2LVrlybH2omMYoaCzV+wEHGjpKQEnTt3drw/ePAgxo4di8DAB5ts5MiRSE1NNSg6IuP52jQ3EfknFiJuRERE4MaNG45zRI4dO4aZM2c61lssFty7d8+o8KiZsNvtLrex9yWc5taWr+ebSA986J0bAwYMQFpaGmpra7F7927cunXL6cS8CxcucKdKurt27ZoppofNMM2tokgwS76JGoMzIm6sXLkSQ4YMwfbt23H//n289tprTvcN2bFjB5566ikDIySiOiwSfAtndhqG2+kBFiJu9O3bF+fOnUNubi6io6Px+OOPO62fNGkSevfubVB05Am/4A1nhm3FIqHhzFC0mWHMAhy3dViIfI+2bdti1KhR9a4bPny44mioMfgFbzhuq+bFDPlW0QezFDv+gIVIA+Tk5CAnJwelpaWora11WpeRkWFQVEREpBczFGz+goWIBykpKXj99dfx4x//GO3bt3d6AB4RERF5h4WIB5s2bcLWrVt54zLSVFZWFuLj4xEcHOy0vKqqCjt27MDUqVMBAOnp6WjXrp0RIWqquU9zN7d8EzUGL9/1oKqqCj/96U+NDoNMZvr06SgvL3dZfuvWLUyfPt3xPiEhAS1btlQZmi58eZo7Kyur3nsCVVVVISsry/HemyKhueWbqDFYiHjwwgsvIDs72+gwyGREpN7DfF9//TVatWplQES+ySxFglnyrSIfZsDt1DgWERGjg/A18+fPd/x/bW0tMjMz0bdvX/Tt29dlevmNN95QHV6z1tAp7uzsbIwaNcrn/rrs168fLBYLTp8+jT59+jgeGQAANTU1uHLlCoYNG4Zdu3Z53ZYvbaumPt4+ICAAxcXFiIqKclpeVlaGqKgo1NTUeB2b1WrF1atXYbfbnZafPn0aTz/9NK5fv97kzzZbvvXOhxnGLKBm3JoJC5F6PP300w36OYvFgoMHD+ocDX2bv3/BU1JSHP9dsGABwsLCHOuCgoLQuXNnjBs3DkFBQV635Uvbqqk7dX8vEsyWbz3zAajpg4piR+/tZDY8WbUehw4dMjoEcsPfp7hXrFgBAOjcuTPi4+Nhs9l0a8uft1VdkWCxWDBkyBC3RYI3Ro8eDQA4deoUhg4d6rZI8IZZ8q0iH4CaMTt9+nQMGzbMpdipOxRXV4gkJCQ0+rNVbSezYSHiQXl5OWpqatCmTRun5devX0dgYCAiIiIMiqx5MdsXfNq0abp9thm2ldmKBH/Pt975UDlm9Sx2VIxbM2Ih4sGkSZPw7LPPYvbs2U7Ld+3ahQ8//BD79u0zKLLmxWxf8JqaGrz55pvYtWsXioqKUFVV5bTem6lbldtKr8tSzVIk1PH3fOudDxV9UFHsqBy3ZsJzRDxo06YNcnNz0atXL6fl58+fx5NPPomysjKDImueMjMzTfEFX758Od555x0sWLAAS5cuxZIlS1BQUID3338fy5cvx9y5c71uQ8W28qXzUJpKzyKhjlnyrTc9+6DyfB1qJKHvFRoaKmfOnHFZfubMGQkJCTEgIjKDrl27yp49e0REJCwsTC5duiQiIhs3bpTJkycbGVqjWCwWKS0tdVl+6tQpad26tdeff//+fVm3bp30799f2rVrJ61bt3Z6aWHZsmXSvn17Wb9+vdhsNlm5cqXMnDlTIiMjZePGjZq0YZZ8q8iH3rZu3SqVlZW6tmGG7aQSCxEPfv7zn8vLL7/ssnz27NkycOBAAyJq3szyBQ8NDZXCwkIREYmOjpbjx4+LiEh+fr5ERERo0oae2+oHP/iB9OvXT6xWq8TFxUm/fv0cr759+0p4eLhMmDDB6z6YpUjw93zX0TsfZvl+qxi3ZsJCxINPP/1UbDabDBo0SJKTkyU5OVkGDRokNptN/vWvfxkdXrNjli94jx49JC8vT0REnnzySUlNTRURkR07dojdbtekDT23Vd13wWKxyKuvvup4n5ycLKtWrZLs7Gy5d++e130wS5Hg7/muo3c+VPRBRbFjlhkwVViINMDJkydl8uTJ0rt3b/nRj34k06dPlwsXLhgdVrNkli94UlKS/PGPfxSRB7+MAgMDpXv37hIUFCRJSUmatKFiW+k9zW2WIsEs+dY7Hyr6oKLYUTFuzYSFCPkVs37BP/vsM9mwYYN8+OGHmn2mGbaVWYqE7/LXfOudDxV9UFHsqBi3ZsJnzTRAfn4+li5dioSEBJSWlgIA9u/fj6+++srgyJqfhx9+GMXFxQCAbt264eOPPwYAfPHFFy6XkPqy1NRUZGRkON4PGDAA8+fPx7Vr17BmzRpN2lCxrWpqarB+/Xr85Cc/QXR0NNq0aeP08taYMWOQk5MDAJgzZw6WLVuG2NhYTJ06FTNmzPD68wFg9erVeO211wAA8fHxOHLkCF566SXs3r0bq1ev1qQNs+Rb73yo6ENJSQni4uIAAGFhYY7nDI0YMQJ79+7VpA0V49ZUjK6EfN0nn3wiISEh8swzz0hQUJDk5+eLiEhqaqqMGzfO4OiaHyP+etVDp06dJDc312V5Xl6edO7cWZM2VGwr1efs6DGTsGrVKtm8ebPL8s2bN8vq1as1acMs+f4urfOhog9GzFboMW7NhIWIBwMGDJANGzaIyINpvLpC5PPPP5eOHTsaGRqJ/37Bg4OD5fLlyy7L8/PzJTg4WJc29dhWek9zm6VIMEu+VeTj2/Tog4piR/V28ncsRDxo2bKlYwfy7ULkypUruu1AyPy6d+8u27Ztc1melZUlXbp00aQNFTtDvY/pm6VIMEu+9c6HEb/A9Sh2VIxbM+E5Ih489NBDjmOW33by5El07NjRgIiat+8ea6+TkZGh2bF2FWbNmoVXXnkFW7ZsQWFhIQoLC5GRkYHf//73mDVrliZtpKen49FHH3VZ3qdPH2zatEmTNvQ+pl9SUoL27du7LLfb7fV+L5siJiYGubm5Lstzc3PRoUMHTdowS771zoeKPqg4X0fFuDUVoyshX3X48GGpqqqSBQsWyMCBA6W4uFjCw8Pl4sWL8umnn0rXrl0lOTnZ6DCbHbP8pVFbWyuJiYlis9nEarWK1WqV0NBQSUlJ0awNFX/p6z3NrWImYc2aNRIZGSkZGRlSUFAgBQUFsnnzZomMjJRVq1Zp0oZZ8q13PlT0QcU+RMW4NRMWIm5YrVa5evWq3Lt3T1544QUJDAwUi8UiLVq0EKvVKs8995zcv3/f6DCbHSOOtevp1q1bcuzYMfn3v/8td+/e1fSzjdgZaj3NbZYioY6/51vvfKjog4p9iIpxayYsRNywWCxy9epVx/vCwkLZu3ev7Ny5kzczMxD/0mg4FTtDvY/pm6VIUMEMRZuKPqjYh6gct2bAQsQNdw/zImPxL42GU7EzVHWozN+LBBXMULSp6IPKfQjHbcNYRESMPk/FF1mtVvzqV7/yeMLdu+++qygiAgARwaJFi5CWluZ4XLvNZkNSUhKWL19ucHS+qaKiAufOnUNISAhiY2M1vfGbzWbDuXPn0KVLF6flly9fRu/evXH37l3N2qKG0TPfqujZB+5DfA8LETesVismTpyIkJCQ7/25LVu2KIqIvs0MO1sziI2NxYoVK/Dcc885Ld+2bRtWrFiBy5cvGxQZ0ffjPsR3BBodgC9LS0tDVFSU0WFQPcLCwtC/f3+jw2j26i5Lra6uxuDBgwEAOTk5SExMxIIFCwyOjsg97kN8BwsRNywWi9EhEPm8hQsXoqysDLNnz3aZ5l68eLHB0RGRP+ChGTesVitKSko4I0LUAJzmJqKm4p1V3Th06FCjnh4aFxeH//73vzpGROS76qa5H3vsMRYhRNQonBHRSHh4OE6fPo2uXbsaHQoREZHf4IwIERERGYaFCBERERmGhQgREREZhoUIERERGYaFCBERERmGhYhG7HY7WrRoYXQYREREfoWFiEauXbuG6upqo8MgIiLyKyxEiIiIyDAsRIiIiMgwLESIiIjIMCxEiIiIyDAsRIiIiMgwLEQ8yMrKwr1791yWV1VVISsry/E+PT0d7dq1UxkaERGR3+PTdz0ICAhAcXExoqKinJaXlZUhKioKNTU1BkVGRETk/zgj4oGIwGKxuCz/+uuv0apVKwMiIiIiMo9AowPwVf369YPFYoHFYsGQIUMQGPj/m6qmpgZXrlzBsGHDDIyQiIjI/7EQcWP06NEAgFOnTmHo0KEICwtzrAsKCkLnzp0xbtw4g6IjIiIyB54j4kFmZibi4+Nhs9mMDoWIiMh0WIgQERGRYXhoxoOamhq8+eab2LVrF4qKilBVVeW0/vr16wZFRkRE5P941YwHKSkpeOONNxAfH4/y8nLMnz8fY8eOhdVqRXJystHhERER+TUemvGgW7duSEtLw/DhwxEeHo5Tp045luXl5SE7O9voEImIiPwWZ0Q8KCkpQVxcHAAgLCwM5eXlAIARI0Zg7969RoZGRETk91iIePDwww+juLgYwIPZkY8//hgA8MUXXyA4ONjI0IiIiPweCxEPxowZg5ycHADAnDlzsGzZMsTGxmLq1KmYMWOGwdERERH5N54j0kh5eXk4evQoYmNj8eyzzxodDhERkV9jIUJERESG4aEZD1JTU5GRkeGyPCMjA2vWrDEgIiIiIvNgIeJBeno6Hn30UZflffr0waZNmwyIiIiIyDxYiHhQUlKC9u3buyy32+2Oq2mIiIioaViIeBATE4Pc3FyX5bm5uejQoYMBEREREZkHnzXjwaxZs/DKK6+guroagwcPBgDk5OQgMTERCxYsMDg6IiIi/8arZjwQESxatAhpaWmOB97ZbDYkJSVh+fLlBkdHRETk31iINFBFRQXOnTuHkJAQxMbG8q6qREREGmAhQkRERIbhyapERERkGBYiREREZBgWIkRERGQYFiJERERkGBYiREREZBgWIkRERGQYFiJERERkGBYiREREZJj/AyqFjR6+YF+3AAAAAElFTkSuQmCC",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"coef = pd.DataFrame(model.coef_, columns=column_names)\n",
"coef.T.plot(kind=\"bar\", legend=False)\n",
"plt.grid()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can extract the change in the odd-ratios and visualize their importance in percentages (see TD6):"
]
},
{
"cell_type": "code",
"execution_count": 262,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAKUCAYAAAAafAKXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADGiElEQVR4nOzdd1gU1/c/8PcuHaTYEFEUsaOgqNFgryCaqLGLxq7RqFGwx4YlttjLx14TscYexRpFERNLwIIFbGissUAApZ7fH353f64LCDtFZjmv59knYWY4Z2bvOnu4c+eOiogIjDHGGGMKov7cO8AYY4wxlltcwDDGGGNMcbiAYYwxxpjicAHDGGOMMcXhAoYxxhhjisMFDGOMMcYUhwsYxhhjjCkOFzCMMcYYUxzTz70DUsnIyMDjx49ha2sLlUr1uXeHMcYYYzlARPjvv//g7OwMtTrrfhajLWAeP34MFxeXz70bjDHGGDPAw4cPUbJkySzXG20BY2trC+D9G2BnZ/fJ7VNTU3H06FH4+PjAzMxMkn3iHHkjPufIWzmM4Rg4R96JzznyVg5D4sfHx8PFxUX7PZ4Voy1gNJeN7OzsclzAWFtbw87OTtIPCuf4/PE5R97KYQzHwDnyTnzOkbdyCIn/qeEfPIiXMcYYY4rDBQxjjDHGFIcLGMYYY4wpDhcwjDHGGFMcLmAYY4wxpjhcwDDGGGNMcbiAYYwxxpjicAHDGGOMMcXhAoYxxhhjisMFDGOMMcYUhwsYxhhjjCkOFzCMMcYYUxwuYBhjjDGmOFzAMMYYY0xxTD/3DjAmNddxv+stszAhzK0NVA06guR03Ue235/dWq5dY4wxZiDugWGMMcaY4nABwxhjjDHF4QKGMcYYY4rDBQxjjDHGFIcLGMYYY4wpDhcwjDHGGFMcLmAYY4wxpjhcwDDGGGNMcbiAYYwxxpjicAHDGGOMMcXhAoYxxhhjisMFDGOMMcYUhwsYxhhjjCkOFzCMMcYYUxwuYBhjjDGmOLkuYEJDQ/H111/D2dkZKpUKe/fu1VmvUqkyff3888/abVxdXfXWz549WyfOlStX0KBBA1haWsLFxQVz58417AgZY4wxZnRyXcAkJiaiWrVqWL58eabrnzx5ovNav349VCoVOnTooLPdtGnTdLYbNmyYdl18fDx8fHxQunRpXLp0CT///DOCgoKwevXq3O4uY4wxxoyQaW5/wc/PD35+flmud3Jy0vl53759aNKkCdzc3HSW29ra6m2rsWXLFqSkpGD9+vUwNzdHlSpVEBERgQULFmDgwIG53WXGGGOMGZlcFzC58ezZM/z+++/YtGmT3rrZs2dj+vTpKFWqFPz9/REQEABT0/e7Ex4ejoYNG8Lc3Fy7va+vL+bMmYPXr1+jYMGCevGSk5ORnJys/Tk+Ph4AkJqaitTU1E/uq2abnGxrKM7xeeJbmJD+MjXp/Dez/EIZQ1vIkcMYjoFz5J34nCNv5TAkfk63VRGR/hk8h1QqFfbs2YN27dplun7u3LmYPXs2Hj9+DEtLS+3yBQsWoEaNGihUqBDOnTuH8ePHo0+fPliwYAEAwMfHB2XKlMGqVau0vxMVFYUqVaogKioKlStX1ssVFBSEqVOn6i0PDg6GtbW1oYfIGGOMMRklJSXB398fcXFxsLOzy3I7SXtg1q9fj+7du+sULwAQGBio/X9PT0+Ym5vju+++w6xZs2BhYWFQrvHjx+vEjY+Ph4uLC3x8fLJ9AzRSU1Nx7NgxtGjRAmZmZgbtA+fIm/GrBh3RW2ahJkyvlYFJF9VIzlDprLsW5Cs4J2AcbSFHDmM4Bs6Rd+JzjryVw5D4misonyJZAXPmzBncunUL27dv/+S2derUQVpaGu7fv4+KFSvCyckJz54909lG83NW42YsLCwyLX7MzMxy1Si53d4QnEPe+MnpqqzXZaj01ot9TMbQFnLkMIZj4Bx5Jz7nyFs5chM/p9tJNg/MunXrULNmTVSrVu2T20ZERECtVsPR0REA4O3tjdDQUJ3rYMeOHUPFihUzHf/CGGOMsfwl1wVMQkICIiIiEBERAQC4d+8eIiIiEBsbq90mPj4eO3fuRP/+/fV+Pzw8HIsWLUJkZCTu3r2LLVu2ICAgAD169NAWJ/7+/jA3N0e/fv1w/fp1bN++HYsXL9a5RMQYY4yx/CvXl5AuXryIJk2aaH/WFBW9evXCxo0bAQDbtm0DEaFbt256v29hYYFt27YhKCgIycnJKFOmDAICAnSKE3t7exw9ehRDhgxBzZo1UaRIEUyePJlvoWaMMcYYAAMKmMaNG+NTNy4NHDgwy2KjRo0aOH/+/CfzeHp64syZM7ndPcYYY4zlA/wsJMYYY4wpDhcwjDHGGFMcLmAYY4wxpjhcwDDGGGNMcbiAYYwxxpjicAHDGGOMMcXhAoYxxhhjisMFDGOMMcYUhwsYxhhjjCkOFzCMMcYYUxwuYBhjjDGmOFzAMMYYY0xxuIBhjDHGmOJwAcMYY4wxxeEChjHGGGOKwwUMY4wxxhSHCxjGGGOMKQ4XMIwxxhhTHC5gGGOMMaY4XMAwxhhjTHG4gGGMMcaY4nABwxhjjDHF4QKGMcYYY4rDBQxjjDHGFIcLGMYYY4wpDhcwjDHGGFMcLmAYY4wxpjhcwDDGGGNMcbiAYYwxxpjicAHDGGOMMcXhAoYxxhhjisMFDGOMMcYUJ9cFTGhoKL7++ms4OztDpVJh7969Out79+4NlUql82rZsqXONq9evUL37t1hZ2cHBwcH9OvXDwkJCTrbXLlyBQ0aNIClpSVcXFwwd+7c3B8dY4wxxoxSrguYxMREVKtWDcuXL89ym5YtW+LJkyfa19atW3XWd+/eHdevX8exY8dw8OBBhIaGYuDAgdr18fHx8PHxQenSpXHp0iX8/PPPCAoKwurVq3O7u4wxxhgzQqa5/QU/Pz/4+fllu42FhQWcnJwyXXfjxg2EhITgwoULqFWrFgBg6dKlaNWqFebNmwdnZ2ds2bIFKSkpWL9+PczNzVGlShVERERgwYIFOoUOY4wxxvKnXBcwOXHq1Ck4OjqiYMGCaNq0KWbMmIHChQsDAMLDw+Hg4KAtXgCgefPmUKvV+PPPP/HNN98gPDwcDRs2hLm5uXYbX19fzJkzB69fv0bBggX1ciYnJyM5OVn7c3x8PAAgNTUVqampn9xnzTY52dZQnOPzxLcwIf1latL5b2b5hTKGtpAjhzEcA+fIO/E5R97KYUj8nG6rIiL9M3gOqVQq7NmzB+3atdMu27ZtG6ytrVGmTBncuXMHP/74IwoUKIDw8HCYmJhg5syZ2LRpE27duqUTy9HREVOnTsXgwYPh4+ODMmXKYNWqVdr1UVFRqFKlCqKiolC5cmW9fQkKCsLUqVP1lgcHB8Pa2trQQ2SMMcaYjJKSkuDv74+4uDjY2dlluZ3oPTBdu3bV/r+Hhwc8PT1RtmxZnDp1Cs2aNRM7ndb48eMRGBio/Tk+Ph4uLi7w8fHJ9g3QSE1NxbFjx9CiRQuYmZlJso+c4/PErxp0RG+ZhZowvVYGJl1UIzlDpbPuWpCv4JyAcbSFHDmM4Rg4R96JzznyVg5D4muuoHyKJJeQPuTm5oYiRYogJiYGzZo1g5OTE54/f66zTVpaGl69eqUdN+Pk5IRnz57pbKP5OauxNRYWFrCwsNBbbmZmlqtGye32huAc8sZPTldlvS5Dpbde7GMyhraQI4cxHAPnyDvxOUfeypGb+DndTvJ5YB49eoSXL1+iePHiAABvb2+8efMGly5d0m5z8uRJZGRkoE6dOtptQkNDda6DHTt2DBUrVsx0/AtjjDHG8pdcFzAJCQmIiIhAREQEAODevXuIiIhAbGwsEhISMHr0aJw/fx7379/HiRMn0LZtW5QrVw6+vu+75StXroyWLVtiwIAB+OuvvxAWFoahQ4eia9eucHZ2BgD4+/vD3Nwc/fr1w/Xr17F9+3YsXrxY5xIRY4wxxvKvXBcwFy9ehJeXF7y8vAAAgYGB8PLywuTJk2FiYoIrV66gTZs2qFChAvr164eaNWvizJkzOpd3tmzZgkqVKqFZs2Zo1aoV6tevrzPHi729PY4ePYp79+6hZs2aGDlyJCZPnsy3UDPGGGMMgAFjYBo3bozsblw6ckR/wOTHChUqhODg4Gy38fT0xJkzZ3K7e4wxxhjLB/hZSIwxxhhTHC5gGGOMMaY4XMAwxhhjTHG4gGGMMcaY4nABwxhjjDHF4QKGMcYYY4rDBQxjjDHGFIcLGMYYY4wpDhcwjDHGGFMcLmAYY4wxpjhcwDDGGGNMcbiAYYwxxpjicAHDGGOMMcXhAoYxxhhjisMFDGOMMcYUhwsYxhhjjCkOFzCMMcYYUxwuYBhjjDGmOFzAMMYYY0xxuIBhjDHGmOJwAcMYY4wxxeEChjHGGGOKwwUMY4wxxhSHCxjGGGOMKQ4XMIwxxhhTHC5gGGOMMaY4XMAwxhhjTHG4gGGMMcaY4nABwxhjjDHF4QKGMcYYY4rDBQxjjDHGFIcLGMYYY4wpTq4LmNDQUHz99ddwdnaGSqXC3r17tetSU1MxduxYeHh4wMbGBs7OzujZsyceP36sE8PV1RUqlUrnNXv2bJ1trly5ggYNGsDS0hIuLi6YO3euYUfIGGOMMaOT6wImMTER1apVw/Lly/XWJSUl4fLly5g0aRIuX76M3bt349atW2jTpo3ettOmTcOTJ0+0r2HDhmnXxcfHw8fHB6VLl8alS5fw888/IygoCKtXr87t7jLGGGPMCJnm9hf8/Pzg5+eX6Tp7e3scO3ZMZ9myZctQu3ZtxMbGolSpUtrltra2cHJyyjTOli1bkJKSgvXr18Pc3BxVqlRBREQEFixYgIEDB+Z2lxljjDFmZHJdwORWXFwcVCoVHBwcdJbPnj0b06dPR6lSpeDv74+AgACYmr7fnfDwcDRs2BDm5uba7X19fTFnzhy8fv0aBQsW1MuTnJyM5ORk7c/x8fEA3l/WSk1N/eR+arbJybaG4hyfJ76FCekvU5POfzPLL5QxtIUcOYzhGDhH3onPOfJWDkPi53RbFRHpn8FzSKVSYc+ePWjXrl2m69+9e4d69eqhUqVK2LJli3b5ggULUKNGDRQqVAjnzp3D+PHj0adPHyxYsAAA4OPjgzJlymDVqlXa34mKikKVKlUQFRWFypUr6+UKCgrC1KlT9ZYHBwfD2tra0ENkjDHGmIySkpLg7++PuLg42NnZZbmdZD0wqamp6Ny5M4gIK1as0FkXGBio/X9PT0+Ym5vju+++w6xZs2BhYWFQvvHjx+vEjY+Ph4uLC3x8fLJ9Az7c32PHjqFFixYwMzMzaB84R96MXzXoiN4yCzVheq0MTLqoRnKGSmfdtSBfwTkB42gLOXIYwzFwjrwTn3PkrRyGxNdcQfkUSQoYTfHy4MEDnDx58pMFRJ06dZCWlob79++jYsWKcHJywrNnz3S20fyc1bgZCwuLTIsfMzOzXDVKbrc3BOeQN35yuirrdRkqvfViH5MxtIUcOYzhGDhH3onPOfJWjtzEz+l2os8DoyleoqOjcfz4cRQuXPiTvxMREQG1Wg1HR0cAgLe3N0JDQ3Wugx07dgwVK1bMdPwLY4wxxvKXXPfAJCQkICYmRvvzvXv3EBERgUKFCqF48eLo2LEjLl++jIMHDyI9PR1Pnz4FABQqVAjm5uYIDw/Hn3/+iSZNmsDW1hbh4eEICAhAjx49tMWJv78/pk6din79+mHs2LG4du0aFi9ejIULF4p02IwxxhhTslwXMBcvXkSTJk20P2vGnfTq1QtBQUHYv38/AKB69eo6v/fHH3+gcePGsLCwwLZt2xAUFITk5GSUKVMGAQEBOuNX7O3tcfToUQwZMgQ1a9ZEkSJFMHnyZL6FmjHGGGMADChgGjdujOxuXPrUTU01atTA+fPnP5nH09MTZ86cye3uMcYYYywf4GchMcYYY0xxuIBhjDHGmOJwAcMYY4wxxeEChjHGGGOKwwUMY4wxxhSHCxjGGGOMKQ4XMIwxxhhTHC5gGGOMMaY4XMAwxhhjTHG4gGGMMcaY4nABwxhjjDHF4QKGMcYYY4rDBQxjjDHGFIcLGMYYY4wpDhcwjDHGGFMcLmAYY4wxpjhcwDDGGGNMcbiAYYwxxpjicAHDGGOMMcXhAoYxxhhjisMFDGOMMcYUhwsYxhhjjCkOFzCMMcYYUxwuYBhjjDGmOFzAMMYYY0xxuIBhjDHGmOJwAcMYY4wxxeEChjHGGGOKwwUMY4wxxhSHCxjGGGOMKQ4XMIwxxhhTHC5gGGOMMaY4uS5gQkND8fXXX8PZ2RkqlQp79+7VWU9EmDx5MooXLw4rKys0b94c0dHROtu8evUK3bt3h52dHRwcHNCvXz8kJCTobHPlyhU0aNAAlpaWcHFxwdy5c3N/dIwxxhgzSrkuYBITE1GtWjUsX7480/Vz587FkiVLsHLlSvz555+wsbGBr68v3r17p92me/fuuH79Oo4dO4aDBw8iNDQUAwcO1K6Pj4+Hj48PSpcujUuXLuHnn39GUFAQVq9ebcAhMsYYY8zYmOb2F/z8/ODn55fpOiLCokWLMHHiRLRt2xYAsHnzZhQrVgx79+5F165dcePGDYSEhODChQuoVasWAGDp0qVo1aoV5s2bB2dnZ2zZsgUpKSlYv349zM3NUaVKFURERGDBggU6hQ5jjDHG8qdcFzDZuXfvHp4+fYrmzZtrl9nb26NOnToIDw9H165dER4eDgcHB23xAgDNmzeHWq3Gn3/+iW+++Qbh4eFo2LAhzM3Ntdv4+vpizpw5eP36NQoWLKiXOzk5GcnJydqf4+PjAQCpqalITU395L5rtsnJtobiHJ8nvoUJ6S9Tk85/M8svlDG0hRw5jOEYOEfeic858lYOQ+LndFsVEemfwXNIpVJhz549aNeuHQDg3LlzqFevHh4/fozixYtrt+vcuTNUKhW2b9+OmTNnYtOmTbh165ZOLEdHR0ydOhWDBw+Gj48PypQpg1WrVmnXR0VFoUqVKoiKikLlypX19iUoKAhTp07VWx4cHAxra2tDD5ExxhhjMkpKSoK/vz/i4uJgZ2eX5Xai9sB8TuPHj0dgYKD25/j4eLi4uMDHxyfbN0AjNTUVx44dQ4sWLWBmZibJPnKOzxO/atARvWUWasL0WhmYdFGN5AyVzrprQb6CcwLG0RZy5DCGY+AceSc+58hbOQyJr7mC8imiFjBOTk4AgGfPnun0wDx79gzVq1fXbvP8+XOd30tLS8OrV6+0v+/k5IRnz57pbKP5WbPNxywsLGBhYaG33MzMLFeNktvtDcE55I2fnK7Kel2GSm+92MdkDG0hRw5jOAbOkXfic468lSM38XO6najzwJQpUwZOTk44ceKEdll8fDz+/PNPeHt7AwC8vb3x5s0bXLp0SbvNyZMnkZGRgTp16mi3CQ0N1bkOduzYMVSsWDHT8S+MMcYYy19yXcAkJCQgIiICERERAN4P3I2IiEBsbCxUKhVGjBiBGTNmYP/+/bh69Sp69uwJZ2dn7TiZypUro2XLlhgwYAD++usvhIWFYejQoejatSucnZ0BAP7+/jA3N0e/fv1w/fp1bN++HYsXL9a5RMQYY4yx/CvXl5AuXryIJk2aaH/WFBW9evXCxo0bMWbMGCQmJmLgwIF48+YN6tevj5CQEFhaWmp/Z8uWLRg6dCiaNWsGtVqNDh06YMmSJdr19vb2OHr0KIYMGYKaNWuiSJEimDx5Mt9CzRhjjDEABhQwjRs3RnY3LqlUKkybNg3Tpk3LcptChQohODg42zyenp44c+ZMbnePMcYYY/kAPwuJMcYYY4rDBQxjjDHGFIcLGMYYY4wpDhcwjDHGGFMcLmAYY4wxpjhcwDDGGGNMcbiAYYwxxpjicAHDGGOMMcXhAoYxxhhjisMFDGOMMcYUhwsYxhhjjCkOFzCMMcYYUxwuYBhjjDGmOFzAMMYYY0xxuIBhjDHGmOKYfu4dYIwxxvI713G/6y2zMCHMrQ1UDTqC5HSVzrr7s1vLtWt5FvfAMMYYY0xxuIBhjDHGmOJwAcMYY4wxxeEChjHGGGOKwwUMY4wxxhSHCxjGGGOMKQ4XMIwxxhhTHC5gGGOMMaY4XMAwxhhjTHG4gGGMMcaY4nABwxhjjDHF4QKGMcYYY4rDBQxjjDHGFIcLGMYYY4wpDhcwjDHGGFMcLmAYY4wxpjiiFzCurq5QqVR6ryFDhgAAGjdurLdu0KBBOjFiY2PRunVrWFtbw9HREaNHj0ZaWprYu8oYY4wxhTIVO+CFCxeQnp6u/fnatWto0aIFOnXqpF02YMAATJs2TfuztbW19v/T09PRunVrODk54dy5c3jy5Al69uwJMzMzzJw5U+zdZYwxxpgCiV7AFC1aVOfn2bNno2zZsmjUqJF2mbW1NZycnDL9/aNHjyIqKgrHjx9HsWLFUL16dUyfPh1jx45FUFAQzM3Nxd5lxhhjjCmMpGNgUlJS8Ouvv6Jv375QqVTa5Vu2bEGRIkVQtWpVjB8/HklJSdp14eHh8PDwQLFixbTLfH19ER8fj+vXr0u5u4wxxhhTCNF7YD60d+9evHnzBr1799Yu8/f3R+nSpeHs7IwrV65g7NixuHXrFnbv3g0AePr0qU7xAkD789OnT7PMlZycjOTkZO3P8fHxAIDU1FSkpqZ+cl812+RkW0Nxjs8T38KE9JepSee/meUXyhjaQo4cxnAMnCPvxFdqDmM9TxkSP6fbqohI/50Ria+vL8zNzXHgwIEstzl58iSaNWuGmJgYlC1bFgMHDsSDBw9w5MgR7TZJSUmwsbHBoUOH4Ofnl2mcoKAgTJ06VW95cHCwzhgbxhhjjOVdSUlJ8Pf3R1xcHOzs7LLcTrIemAcPHuD48ePanpWs1KlTBwC0BYyTkxP++usvnW2ePXsGAFmOmwGA8ePHIzAwUPtzfHw8XFxc4OPjk+0boJGamopjx46hRYsWMDMz++T2huAcnyd+1aAjesss1ITptTIw6aIayRkqnXXXgnwF5wSMoy3kyGEMx8A58k58peYw1vOUIfE1V1A+RbICZsOGDXB0dETr1q2z3S4iIgIAULx4cQCAt7c3fvrpJzx//hyOjo4AgGPHjsHOzg7u7u5ZxrGwsICFhYXecjMzs1w1Sm63NwTnkDd+croq63UZKr31Yh+TMbSFHDmM4Rg4R96Jr7Qcxn6eyk38nG4nSQGTkZGBDRs2oFevXjA1/f8p7ty5g+DgYLRq1QqFCxfGlStXEBAQgIYNG8LT0xMA4OPjA3d3d3z77beYO3cunj59iokTJ2LIkCGZFiiMMcYYy38kKWCOHz+O2NhY9O3bV2e5ubk5jh8/jkWLFiExMREuLi7o0KEDJk6cqN3GxMQEBw8exODBg+Ht7Q0bGxv06tVLZ94YxhhjjOVvkhQwPj4+yGxssIuLC06fPv3J3y9dujQOHTokxa4xxhhjzAjws5AYY4wxpjhcwDDGGGNMcbiAYYwxxpjicAHDGGOMMcXhAoYxxhhjisMFDGOMMcYUhwsYxhhjjCkOFzCMMcYYUxwuYBhjjDGmOFzAMMYYY0xxuIBhjDHGmOJwAcMYY4wxxeEChjHGGGOKwwUMY4wxxhSHCxjGGGOMKQ4XMIwxxhhTHC5gGGOMMaY4XMAwxhhjTHG4gGGMMcaY4nABwxhjjDHF4QKGMcYYY4rDBQxjjDHGFIcLGMYYY4wpDhcwjDHGGFMcLmAYY4wxpjhcwDDGGGNMcbiAYYwxxpjicAHDGGOMMcXhAoYxxhhjisMFDGOMMcYUhwsYxhhjjCkOFzCMMcYYUxwuYBhjjDGmOKIXMEFBQVCpVDqvSpUqade/e/cOQ4YMQeHChVGgQAF06NABz54904kRGxuL1q1bw9raGo6Ojhg9ejTS0tLE3lXGGGOMKZSpFEGrVKmC48eP//8kpv8/TUBAAH7//Xfs3LkT9vb2GDp0KNq3b4+wsDAAQHp6Olq3bg0nJyecO3cOT548Qc+ePWFmZoaZM2dKsbuMMcYYUxhJChhTU1M4OTnpLY+Li8O6desQHByMpk2bAgA2bNiAypUr4/z58/jyyy9x9OhRREVF4fjx4yhWrBiqV6+O6dOnY+zYsQgKCoK5ubkUu8wYY4wxBZGkgImOjoazszMsLS3h7e2NWbNmoVSpUrh06RJSU1PRvHlz7baVKlVCqVKlEB4eji+//BLh4eHw8PBAsWLFtNv4+vpi8ODBuH79Ory8vDLNmZycjOTkZO3P8fHxAIDU1FSkpqZ+cp812+RkW0Nxjs8T38KE9JepSee/meUXyhjaQo4cxnAMnCPvxFdqDmM9TxkSP6fbqohI/50R4PDhw0hISEDFihXx5MkTTJ06Ff/88w+uXbuGAwcOoE+fPjqFBgDUrl0bTZo0wZw5czBw4EA8ePAAR44c0a5PSkqCjY0NDh06BD8/v0zzBgUFYerUqXrLg4ODYW1tLeYhMsYYY0wiSUlJ8Pf3R1xcHOzs7LLcTvQemA8LDE9PT9SpUwelS5fGjh07YGVlJXY6rfHjxyMwMFD7c3x8PFxcXODj45PtG6CRmpqKY8eOoUWLFjAzM5NkHznH54lfNeiI3jILNWF6rQxMuqhGcoZKZ921IF/BOQHjaAs5chjDMXCOvBNfqTmM9TxlSHzNFZRPkeQS0occHBxQoUIFxMTEoEWLFkhJScGbN2/g4OCg3ebZs2faMTNOTk7466+/dGJo7lLKbFyNhoWFBSwsLPSWm5mZ5apRcru9ITiHvPGT01VZr8tQ6a0X+5iMoS3kyGEMx8A58k58peUw9vNUbuLndDvJ54FJSEjAnTt3ULx4cdSsWRNmZmY4ceKEdv2tW7cQGxsLb29vAIC3tzeuXr2K58+fa7c5duwY7Ozs4O7uLvXuMsYYY0wBRO+BGTVqFL7++muULl0ajx8/xpQpU2BiYoJu3brB3t4e/fr1Q2BgIAoVKgQ7OzsMGzYM3t7e+PLLLwEAPj4+cHd3x7fffou5c+fi6dOnmDhxIoYMGZJpDwtjjDHG8h/RC5hHjx6hW7duePnyJYoWLYr69evj/PnzKFq0KABg4cKFUKvV6NChA5KTk+Hr64v//e9/2t83MTHBwYMHMXjwYHh7e8PGxga9evXCtGnTxN5VxhhjjCmU6AXMtm3bsl1vaWmJ5cuXY/ny5VluU7p0aRw6dEjsXWOMMcaYkeBnITHGGGNMcbiAYYwxxpjicAHDGGOMMcXhAoYxxhhjisMFDGOMMcYUhwsYxhhjjCkOFzCMMcYYUxwuYBhjjDGmOFzAMMYYY0xxuIBhjDHGmOJwAcMYY4wxxeEChjHGGGOKwwUMY4wxxhSHCxjGGGOMKQ4XMIwxxhhTHC5gGGOMMaY4XMAwxhhjTHG4gGGMMcaY4nABwxhjjDHF4QKGMcYYY4rDBQxjjDHGFIcLGMYYY4wpDhcwjDHGGFMcLmAYY4wxpjhcwDDGGGNMcbiAYYwxxpjicAHDGGOMMcXhAoYxxhhjisMFDGOMMcYUhwsYxhhjjCkOFzCMMcYYUxwuYBhjjDGmOKIXMLNmzcIXX3wBW1tbODo6ol27drh165bONo0bN4ZKpdJ5DRo0SGeb2NhYtG7dGtbW1nB0dMTo0aORlpYm9u4yxhhjTIFMxQ54+vRpDBkyBF988QXS0tLw448/wsfHB1FRUbCxsdFuN2DAAEybNk37s7W1tfb/09PT0bp1azg5OeHcuXN48uQJevbsCTMzM8ycOVPsXWaMMcaYwohewISEhOj8vHHjRjg6OuLSpUto2LChdrm1tTWcnJwyjXH06FFERUXh+PHjKFasGKpXr47p06dj7NixCAoKgrm5udi7zRhjjDEFEb2A+VhcXBwAoFChQjrLt2zZgl9//RVOTk74+uuvMWnSJG0vTHh4ODw8PFCsWDHt9r6+vhg8eDCuX78OLy8vvTzJyclITk7W/hwfHw8ASE1NRWpq6if3U7NNTrY1FOf4PPEtTEh/mZp0/ptZfqGMoS3kyGEMx8A58k58peYw1vOUIfFzuq2KiPTfGZFkZGSgTZs2ePPmDc6ePatdvnr1apQuXRrOzs64cuUKxo4di9q1a2P37t0AgIEDB+LBgwc4cuSI9neSkpJgY2ODQ4cOwc/PTy9XUFAQpk6dqrc8ODhY5/IUY4wxxvKupKQk+Pv7Iy4uDnZ2dlluJ2kPzJAhQ3Dt2jWd4gV4X6BoeHh4oHjx4mjWrBnu3LmDsmXLGpRr/PjxCAwM1P4cHx8PFxcX+Pj4ZPsGaKSmpuLYsWNo0aIFzMzMDNoHzpE341cNOqK3zEJNmF4rA5MuqpGcodJZdy3IV3BOwDjaQo4cxnAMnCPvxFdqDmM9TxkSX3MF5VMkK2CGDh2KgwcPIjQ0FCVLlsx22zp16gAAYmJiULZsWTg5OeGvv/7S2ebZs2cAkOW4GQsLC1hYWOgtNzMzy1Wj5HZ7Q3AOeeMnp6uyXpeh0lsv9jEZQ1vIkcMYjoFz5J34Ssth7Oep3MTP6Xai30ZNRBg6dCj27NmDkydPokyZMp/8nYiICABA8eLFAQDe3t64evUqnj9/rt3m2LFjsLOzg7u7u9i7zBhjjDGFEb0HZsiQIQgODsa+fftga2uLp0+fAgDs7e1hZWWFO3fuIDg4GK1atULhwoVx5coVBAQEoGHDhvD09AQA+Pj4wN3dHd9++y3mzp2Lp0+fYuLEiRgyZEimvSyMMcYYy19E74FZsWIF4uLi0LhxYxQvXlz72r59OwDA3Nwcx48fh4+PDypVqoSRI0eiQ4cOOHDggDaGiYkJDh48CBMTE3h7e6NHjx7o2bOnzrwxjDHGGMu/RO+B+dRNTS4uLjh9+vQn45QuXRqHDh0Sa7cYY4wxZkT4WUiMMcYYUxwuYBhjjDGmOFzAMMYYY0xxJH+UAGOMMSYV13G/6y2zMCHMrf1+criP50+5P7u1XLvGJJYvCxj+wDPGGGPKxpeQGGOMMaY4XMAwxhhjTHG4gGGMMcaY4nABwxhjjDHF4QKGMcYYY4rDBQxjjDHGFIcLGMYYY4wpDhcwjDHGGFMcLmAYY4wxpjhcwDDGGGNMcbiAYYwxxpjicAHDGGOMMcXhAoYxxhhjisMFDGOMMcYUhwsYxhhjjCkOFzCMMcYYUxzTz70DjDEmJtdxv+stszAhzK0NVA06guR0lc66+7Nby7VrjDERcQ8MY4wxxhSHCxjGGGOMKQ4XMIwxxhhTHC5gGGOMMaY4XMAwxhhjTHG4gGGMMcaY4nABwxhjjDHF4QKGMcYYY4rDBQxjjDHGFIcLGMYYY4wpTp4uYJYvXw5XV1dYWlqiTp06+Ouvvz73LjHGGGMsD8izBcz27dsRGBiIKVOm4PLly6hWrRp8fX3x/Pnzz71rjDHGGPvM8uzDHBcsWIABAwagT58+AICVK1fi999/x/r16zFu3LjPvHeMMcY+JbcP1gT44Zos5/JkAZOSkoJLly5h/Pjx2mVqtRrNmzdHeHh4pr+TnJyM5ORk7c/x8fEAgNTUVKSmpupsa2FCer9voSad/37o4983lCaOWPGqBh3RW2ahJkyvBdScFoLkDN2Tw7UgX1Hyin0cUsc3lvY21hzc3sabI7dtYUheY2lvYzkOMeLndFsVEWX+KfqMHj9+jBIlSuDcuXPw9vbWLh8zZgxOnz6NP//8U+93goKCMHXqVL3lwcHBsLa2lnR/GWOMMSaOpKQk+Pv7Iy4uDnZ2dllulyd7YAwxfvx4BAYGan+Oj4+Hi4sLfHx8sn0DNFJTU3Hs2DG0aNECZmZmgvcn696RDEy6qJa0d0Ss48jsGABxjyO375MhOTKjxPaWOge3d85xextO7LaQIwefzw3PYci/b80VlE/JkwVMkSJFYGJigmfPnuksf/bsGZycnDL9HQsLC1hYWOgtNzMzy1XD53b7rGR2bVe7LkOlt17sf8hiHEd2xwCIcxy5fZ8MyZEdJbW31Dm4vXOO21s4sdpCjhx8PheeIzf/vnOaN0/ehWRubo6aNWvixIkT2mUZGRk4ceKEziUlxhhjjOVPebIHBgACAwPRq1cv1KpVC7Vr18aiRYuQmJiovSuJMcYYY/lXni1gunTpghcvXmDy5Ml4+vQpqlevjpCQEBQrVuxz7xpjzECZ3SKbmpqKQ4cO4VqQr+SXFBhjxiPPFjAAMHToUAwdOvRz7wZjjDHG8pg8OQaGMcYYYyw7eboHhhk/vqTAGGPMEFzAMMZYLslReHNxz1j2uIBhTCH4C40xZqisnjGl5HMIj4FhjDHGmOJwDwzLkjFW7Cxr3N75C7c3UzouYCTC3f35C7c3Y8aL/33nTVzAMMYYY0wwuQs9HgPDGGOMMcXhAoYxxhhjisMFDGOMMcYUhwsYxhhjjCkOFzCMMcYYUxwuYBhjjDGmOFzAMMYYY0xxuIBhjDHGmOJwAcMYY4wxxeEChjHGGGOKwwUMY4wxxhSHCxjGGGOMKQ4XMIwxxhhTHC5gGGOMMaY4pp97B6RCRACA+Pj4HG2fmpqKpKQkxMfHi/7Ib86Rt+JzjryVwxiOgXPknficI2/lMCS+5ntb8z2eFaMtYP777z8AgIuLy2feE8YYY4zl1n///Qd7e/ss16voUyWOQmVkZODx48ewtbWFSqX65Pbx8fFwcXHBw4cPYWdnJ8k+cY68EZ9z5K0cxnAMnCPvxOcceSuHIfGJCP/99x+cnZ2hVmc90sVoe2DUajVKliyZ69+zs7OT7IPCOfJWfM6Rt3IYwzFwjrwTn3PkrRy5jZ9dz4sGD+JljDHGmOJwAcMYY4wxxeEC5v9YWFhgypQpsLCw4ByfOYcxHAPnyDvxOUfeymEMx8A58kZ8ox3EyxhjjDHjxT0wjDHGGFMcLmAYY4wxpjhcwDDGGGNMcbiAYYwxxpjicAEjg5SUFNy6dQtpaWmfe1dyLS0tDZs3b8azZ88UGZ8xxphx4gLmA/Hx8di7dy9u3LghSrykpCT069cP1tbWqFKlCmJjYwEAw4YNw+zZs0XJkZn09HRERETg9evXgmOZmppi0KBBePfunQh7Jn98jR9++AFLlizRW75s2TKMGDFCkpxE9MmHkTHGGDNMvi5gOnfujGXLlgEA3r59i1q1aqFz587w9PTEb7/9Jjj++PHjERkZiVOnTsHS0lK7vHnz5ti+fbvg+BojRozAunXrALwvXho1aoQaNWrAxcUFp06dEhy/du3aiIiIEBznc8UHgN9++w316tXTW163bl3s2rVL1FybN2+Gh4cHrKysYGVlBU9PT/zyyy+i5vgcXr9+jc2bN0uaIzExEaGhoYrPkZaWpv2DRSoPHz5E3759FRsfkOd9kuNze+fOHTRt2lTSHFK3x5s3bySLLRnKx4oVK0YRERFERLRlyxYqV64cJSYm0v/+9z+qXr264PilSpWi8PBwIiIqUKAA3blzh4iIoqOjydbWVnB8jRIlStCFCxeIiGjPnj3k7OxMt27dookTJ1LdunUFx9++fTu5ubnR0qVL6dy5cxQZGanzyuvxiYgsLCwoOjpab3l0dDRZWFiIkoOIaP78+WRtbU1jxoyhffv20b59+2j06NFkbW1NCxYsEC1PZiIiIkitVis2PufIWzmM4Rg4R+Zmz55N27Zt0/7cqVMnUqvV5OzsrP1OFGrjxo108OBB7c+jR48me3t78vb2pvv374uSw2gf5pgTcXFxKFSoEAAgJCQEHTp0gLW1NVq3bo3Ro0cLjv/ixQs4OjrqLU9MTMzRE7Jz6t9//4WTkxMA4NChQ+jUqRMqVKiAvn37YvHixYLjd+3aFcD7yzAaKpUKRASVSoX09PQ8HR8AypUrh5CQEAwdOlRn+eHDh+Hm5iY4vsbSpUuxYsUK9OzZU7usTZs2qFKlCoKCghAQECBarsyQgEtW8fHx2a7/77//DI7Ncm///v3Zrr97926eji8XOT63mV1+/tA///wjOIec7bFy5Ups2bIFAHDs2DEcO3YMhw8fxo4dOzB69GgcPXpUcI6ZM2dixYoVAIDw8HAsX74cCxcuxMGDBxEQEIDdu3cLzpGvCxgXFxeEh4ejUKFCCAkJwbZt2wC873L88JKPoWrVqoXff/8dw4YNAwBt0bJ27Vp4e3sLjq9RrFgxREVFoXjx4ggJCdF+aJKSkmBiYiI4/r179wTH+JzxASAwMBBDhw7FixcvtF29J06cwPz587Fo0SLR8jx58gR169bVW163bl08efJEUOz27dtnuz4uLk5QYezg4JDt72sKSiE0fzBkRYxiVY4cNWrUyHb927dvBedo166dtpDPipD2kDo+IM/7JMfndsSIEShevDjMzc0zXZ+SkiIoPiBPe2g8ffoULi4uAICDBw+ic+fO8PHxgaurK+rUqSNKjocPH6JcuXIAgL1796JDhw4YOHAg6tWrh8aNG4uSI18XMCNGjED37t1RoEABlCpVSvumhoaGwsPDQ3D8mTNnws/PD1FRUUhLS8PixYsRFRWFc+fO4fTp04Lja/Tp0wedO3dG8eLFoVKp0Lx5cwDAn3/+iUqVKgmOX7p0acExPmd8AOjbty+Sk5Px008/Yfr06QAAV1dXvd4SocqVK4cdO3bgxx9/1Fm+fft2lC9fXlDsAwcOoEWLFihWrFim64V+Mdva2mLChAlZnsCio6Px3XffCcqRnJyMwYMHZ/nv68GDB5g6dWqezxEVFYWuXbuiTJkyma5/8uQJbt++LShH8eLF8b///Q9t27bNdH1ERARq1qyZZ+MD8rxPcnxuS5cujTlz5qBz586ZrhfjvZKjPTQKFiyIhw8fwsXFBSEhIZgxYwaA98WeGAU+ABQoUAAvX75EqVKlcPToUQQGBgIALC0tRSlcgXxewHz//feoXbs2Hj58iBYtWkCtfj+m2c3NTdugQtSvXx8RERGYPXs2PDw8cPToUdSoUQPh4eGiFEgaQUFBqFq1Kh4+fIhOnTppH5plYmKCcePGiZYnKioKsbGxen9ttGnTRhHxBw8ejMGDB+PFixewsrJCgQIFRIn7oalTp6JLly4IDQ3VDhoOCwvDiRMnsGPHDkGxK1eujA4dOqBfv36Zro+IiMDBgwcNjq/5a7lRo0aZrndwcBB8V1X16tXh4uKCXr16Zbo+MjJScHEhR46qVauiTp06GDx4cKbrIyIisGbNGkE5atasiUuXLmX5hfapv9Y/d3xAnvdJjs+t5r3KqoAR472Soz002rdvD39/f5QvXx4vX76En58fAODvv//W9poI1aJFC/Tv3x9eXl64ffs2WrVqBQC4fv06XF1dRcmRrwsY4P1lHk9PT9y7dw9ly5aFqakpWrduLVr8smXLCv4HmhMdO3YEAJ3bkbM6gefW3bt38c033+Dq1as6/4g03ZlCK3ap43+saNGiosb7UIcOHfDnn39i4cKF2Lt3L4D3hcdff/0FLy8vQbFr1qyJy5cvZ1nAWFhYoFSpUgbH9/f3z/YvIycnJ0yZMsXg+ADQunXrbO92KFSokOAeMTly1KtXD7du3cpyva2tLRo2bCgox+jRo5GYmJjl+nLlyuGPP/7Is/EBed4nOT6306ZNQ1JSUpbr3d3dBV8Kl6M9NBYuXAhXV1c8fPgQc+fO1f4x9+TJE3z//fei5Fi+fDkmTpyIhw8f4rfffkPhwoUBAJcuXUK3bt1EyZGvn0adlJSEYcOGYdOmTQCA27dvw83NDcOGDUOJEiUE914cOnQIJiYm8PX11Vl+5MgRZGRkaKteodLT0zFz5kysXLkSz5490x7HpEmT4OrqmuUXXk59/fXXMDExwdq1a1GmTBn89ddfePnyJUaOHIl58+ahQYMGeTJ+jRo1cOLECRQsWBBeXl7ZXj++fPmyobsvm+TkZKSnp8Pa2vpz7wpjjH12+XoeGKnnaRk3blymvQdEJOqlnZ9++gkbN27E3LlzdQaZVa1aFWvXrhUcPzw8HNOmTUORIkWgVquhVqtRv359zJo1S+fOobwWv23bttrLaW3bts32pQQWFhayFy+PHj1CRkaGrDlZ1rZu3ZrtX+l5Pb5c5Pjczp49W/K5U6Rsj19++QX169eHs7MzHjx4AABYtGgR9u3bJ1qON2/e4OjRo/j111+xefNm7Uu0ebFEuRlboaSep8XS0pLu3bunt/zevXtkbW0tOL5G2bJl6fjx40Skexw3btwgBwcHwfEdHBzo7t27RETk5uZGJ0+eJCKimJgYsrKyyvPx5aBSqUitVmf7MjExET1vq1at6PHjx6LH1bC1tdV+njhH9qpWrUqxsbGS5pD6OPh9yh85/ve//1GRIkVoxowZZGVlpc2xYcMGaty4sSg59u/fT7a2tqRSqcje3p4cHBy0r4IFC4qSI1+PgZF6nhZ7e3vcvXtXb8BSTEwMbGxsBMfX+OeffzIdeJWRkYHU1FTB8atWrYrIyEiUKVMGderU0fb0rF69WpQ5VKSOD7wfmH3hwgXtdViNN2/eoEaNGoLnWNizZ0+W68LDw7FkyRJJ/iIMDQ0VbUR/ZkiGK8zGkuP+/fui/HvLjtTHwe9T/sixdOlSrFmzBu3atdN5rE2tWrUwatQoUXKMHDkSffv2xcyZMyXrOc7XBYzU87S0bdsWI0aMwJ49e1C2bFkA74uXkSNHinZnDfB+ANmZM2f0bkfetWuX4IGjADBx4kRtN+a0adPw1VdfoUGDBihcuLAol9qkjg+8P2lmdjkvOTkZjx49Ehw/s8tQt27dwrhx43DgwAF0794d06ZNE5yHMcaEunfvXqbfDRYWFqJdsvrnn3/www8/SHrZO18WMImJibCxsZF8npa5c+eiZcuWqFSpEkqWLAng/bXZBg0aYN68eYLj0/9N0DR58mT06tUL//zzDzIyMrB7927cunULmzdvFnRbrcaHg5DLlSuHmzdv4tWrVyhYsKAoPVVSxv9wdssjR47A3t5e+3N6ejpOnDiR5RwVhnr8+DGmTJmCTZs2wdfXFxEREahataqoOTRKly4NMzMzSWIDwI8//vjJieGE6tGjB+zs7BSfo0GDBrCyspI0x+HDh1GiRAnFxgfkeZ8+/tympqaK/u8kKioKzs7Oosb82OHDh3VyvHr1SpR/j2XKlEFERITeH70hISGoXLmy4PjA+/P6xYsXRZ3pXI8oF6IUxs3Njc6cOUNE78dZ9O/fn7744guqXLkyde/ena5cuSJaroyMDDpy5AjNnTuXli5dSqdPnxYttre3t/b5PqGhodS8eXMqWrQoWVlZUb169ejIkSOi5SJ6PzYoJCSEkpKSiOj9seX1+CqVSjs+RfP/mpe5uTlVqFCBDhw4IDgPEdGbN29ozJgxZGVlRd7e3hQaGipK3LwiMjKSzMzMPvdufNLEiRMpNTU1y/UPHjyg5s2bS7oPUVFRNHLkSElinzp1in7//Xd69eqVoDhJSUm0b98+io+P11sXFxdH+/bto3fv3gnK8Sl37tyhFi1aCIrRo0cPiouLy3L9hQsXqEqVKoJyfG5HjhyhTp06kaWlpSjx1qxZQyVKlKBt27aRjY0Nbd26lWbMmKH9f0Npnv+2b98+Wrt2LZUqVYqmTJlCu3bt0lm3b98+UY4jXxYwo0ePJjMzMxo1ahQlJyd/7t0xWKdOncjGxoaWLVsmaZ5///2XmjZtqi0ENAO++vTpQ4GBgXk+PhGRq6srvXjxQpRYmZkzZw4VKlSI3N3dae/evZLk+Pghl1m9pCLGw+QCAgIyfQUFBVFwcLAoX5guLi5UvXp1unr1qt66lStXkq2tLbVs2VJwno8lJCTQ2rVrydvbm1QqleAvzdmzZ9PEiRO1P2dkZJCvr6+2AC9WrBhdu3bN4PiLFi2ipk2bZrm+WbNmkp9bxPhM1ahRg0qUKEEhISE6y1NSUmjcuHFkZmZG3333naAcrq6uVKZMmWxfbm5ugnJ87P79+zR58mQqXbo02dnZUZcuXWjHjh2ixf/111+pXLly2s9TiRIlaO3atYJifvxHYlYvsR5KmW/ngTl//jz69u0LtVqNX375RZSxIsD7h34NHDgQlpaWn3wAmBi3IO/cuRNDhw6Fp6cnNmzYoL1UJaaePXvi+fPnWLt2LSpXrozIyEi4ubnhyJEjCAwMxPXr1/N0fDmo1WpYWVmhefPm2T5/SsgDzNRqdZazcYr98MvMREZGokaNGoLiN2nSJNPlb968QUxMDIoVK4aTJ08KmpAvPj4eQ4cOxY4dOzBlyhSMHTsWjx49Qt++fXHhwgX8/PPPGDhwoMHxPxYWFoZ169Zhx44dePv2LQICAtC/f3/Bj/GoUaMGxo4diy5dugB4/2+9V69eOHbsGCpXroyePXvC2tra4Bmea9eujUmTJuHrr7/OdP3Bgwcxbdo0/PXXXwYfw6eI8ZlKS0vDtGnTMHv2bPTp0wfz58/HzZs30atXLyQkJGDNmjXw8fERtJ/ZPRT3/v37WLVqlXaeJiFSUlKwe/durF27FmFhYWjevDkOHz6Mv//+W9TZ2z+UlJSEhISETG9oyevybQEDvB/AOXHiRCxbtgwtWrSAqanukCBDvmzKlCmDixcvonDhwtmOrVCpVKI9XfTFixcYMmQIjh07hm+//VbvOBYsWCAovpOTE44cOYJq1arB1tZWW2DcvXsXnp6eSEhIyNPxNU6cOIGFCxfixo0bAN7PkDtixAjts6OE6N27d47G62zYsMHgHJq5Gj5FqmdLifFlk534+Hh0794dtra2CA4OFhxv3759+O677+Dk5IR79+6hdu3aWLt2rSjvz/Pnz7Fx40asX78ecXFx6NatG/z9/eHt7Y3IyEi4u7sLzlGwYEGcO3dOOyahT58+SE9Px+bNmwG8/yOsU6dOePjwocHxIyMjsywWY2NjUa1aNbx+/dqwA8gBMT9TFy9eRO/evfHq1Sv8+++/+Pbbb7Fw4ULJxj69evUK06dPx4oVK1CnTh3MmTMHX375pcHxhg0bhq1bt6J8+fLo0aMHunbtisKFC8PMzEy0z5ScNm/ejC5dumjn4tJISUnBtm3bRHkGXb4cxKuRnJyM58+fQ6VSwd7eXu+L3xAfTictx1OWgfdTo1euXBl79uzB33//rXMcYgyyTUxMzHQk+atXr/Q+nHkxPgD873//w/Dhw9GxY0cMHz4cwPsvgFatWmHhwoUYMmSIoPgbN27M1faPHj2Cs7Oz9vlbOSH1Qy/j4+OzXf/ff/9Jmt/Ozg6TJk1Cp06dRIn35ZdfwsPDAydOnICNjQ0mTpwo2ntYunRpdOzYEYsXL9Z5jpqY0tLSdD7/4eHhGDFihPZnZ2dn/Pvvv4Liv3jxIssC5sWLF0hLSzM4vtwsLS1hZmaGuLg4mJubo0mTJpIUL2/fvsWCBQswb948lC5dGrt379Y+50eIFStWYOzYsRg3bhxsbW1F2NOsZTUzuUqlgqWlJcqVK4fevXtn2WOaE3369EHLli31enb+++8/9OnTR5yH6IpyIUqBjh49SiVLlqQvvviCoqKiJMmhGSgspWvXrlGNGjXI1dVVOwGc2Pz8/LTX4gsUKEB3796l9PR06tSpE3Xo0CHPxyciKlGiBC1dulRv+bJly8jZ2VmUHLlhyARVUo+B+dRkfGJeu87KnTt3qECBAoLjBAcHU6FChahp06Z08+ZNGj16NJmbm9OIESPo7du3guNXrFiRXF1d6ccff6QbN25ol5uamtL169cFxyciqlatGm3YsIGI3g88VqlUOrHDwsKoRIkSBsevU6cOzZ49O8v1M2fOpDp16hgcn4ioevXq5OXlleWrYsWKgj9TGRkZNHPmTLKwsKDevXvT69evafny5VSgQAH65ptv6Pnz54Lia6SlpdGKFSvIycmJXF1dafPmzaLeyBAcHEzNmzcnGxsb6ty5Mx04cIDS0tJE/UxpjBs3juzt7al+/foUGBhIgYGB1KBBA7K3t6fhw4dTixYtSK1WCxrPp1KpMn3vIyIiRJvILl8WMAMHDiQLCwuaOnUqpaWlSZbHzMyMXF1dafz48YIG22Vl1qxZZGFhQX369Mn0TgKxXL16lRwdHally5Zkbm5OHTt2pMqVK1OxYsUoJiYmz8cnIrKxsdHesfWh27dvk42NjSg5cuPDGZNz6uO7qT4sLMQYHHfq1KkcvaS0ZcsWqlatmqAY7du3JxsbG1qyZInO8rCwMKpQoQJVqFCBzp07JygHEdHZs2epT58+VKBAAapRowYtWLCATE1NRfuDaPXq1WRjY0N9+/Yld3d3qlu3rs766dOn01dffWVw/FWrVpGNjU2md+Ht37+fbGxsaNWqVQbHJyIKCgrK0UuI2rVrU/HixWn//v06y+/cuUMNGjSgIkWK0LZt2wTl2L59O5UvX56KFi1KixYtkvTmj7t379LkyZOpVKlSVKRIEVKr1bRz505Rc/Tv35+mTZumt3z69OnUv39/IiKaPHky1axZM9exNUWrWq0mDw8PnYLV09OTbG1tqVOnToKPgSifDuKtWrUqNm/erH0Mu1T+/fdfbNu2DVu3bkV4eDg8PT3RvXt3dOvWTZTBtsWLF8fq1auzHIQnpri4OCxbtgyRkZFISEhAjRo1MGTIEBQvXlwR8f39/eHl5YXRo0frLJ83bx4uXryIbdu2iZInpz4c65NTH46BISJUrVoVhw4d0rssIuWlJqHzUFy5ciXT5XFxcbh06RJmzpyJKVOmCLqkV69ePWzcuBHly5fXW/f27VuMGzcOK1asQEpKisE5PpSQkICtW7diw4YNOH/+PBo1agR/f3+0a9dO8JPP169fjwMHDmifqOzk5KRd9/3336NFixb45ptvDI7fo0cPBAcHo1KlSqhYsSIA4ObNm7h9+zY6d+6MrVu3Ctp/OXTt2hX/+9//Mv1cEhEWLVqESZMmCRpLpxmk361bt2wvSwkdb/ghIsLRo0exbt067N+/H0WKFEH79u0/eXNITtjb2+PSpUt6M7jHxMSgZs2aiIuLw82bN/HFF1/k+tLx1KlTtf8dOXKk9knXAGBubg5XV1d06NBB57l9hsqXBUxKSkqu3jw7OztEREQImpDn3r17CA4OxtatW3Hz5k00bNgQJ0+eNDgeALx8+VJvavzseHh44NChQ3BxcRGUV4lmzJiBefPmoV69etpZls+fP4+wsDCMHDlS56Qkxt1hn2JIASNFjJw6evQo1q5diwMHDgh6dEF2d1IVKVIEgYGBGDt2rKCxWxkZGZ8ckxIaGoqGDRsanCMrN27cwLp16/DLL7/g1atXkk+ZLwT9311rO3bsQHBwMKKjo0FEqFChAvz9/dG5c+fPvYuiiY6OzrSgzanGjRvn6DP5xx9/GJwjO69evcLmzZuxYcMGREZGCo5XrFgx/Pzzz3rjUDZv3ozRo0fj2bNniIqKQqNGjfDixQuDcmzatAldunTReVCy2PJlAZNbYn1RpKen4/Dhw5g0aRKuXLki2d0cWTH0OFxdXdG3b1/06dNHkuJH6vgAcjzbrph3h2VHCQXMgwcPsH79emzatAmvX7+Gn58fOnToIGiQbVZ3UtnZ2aFgwYIGx80pIkJISAjWrVuHXbt2SZYnNTUVBw4cQPv27Q2O8alB1RqGDlStW7cuNm/enOlz1MSS1WDRj12+fFmyfWD6ZsyYgZkzZ2LAgAH44osvAAAXLlzA2rVr8eOPP2LChAlYuHAhDh06hGPHjgnKlZKSgufPn+s9C07IVAka+fouJLmEhYVhy5Yt2LVrF969e4e2bdti1qxZn3u3cmzEiBHYuHEjpk2bhiZNmqBfv3745ptvRLtDSOr4gHx3hOWUGHeHSSGzeSgePXok2jwUUt9JlZV79+5h/fr12LhxI168eCH41vmcFBdCczg4OGT7OSGB8/6ULFkS1atXx5w5cwTfhZeVdu3aaf+fiDBr1iwMGjRI1MdT5IUiSdPzJuQRMe7u7jh79qz2vfn+++8xbdo0FClSBMD7W/ddXV2RlJQkeH8nTpyIMmXKYNmyZfjll18AABUrVsSaNWvg7+8PABg0aBAGDx5scI7o6Gj07dsX586d01ku9HP7Ie6ByQFD/9IdN24ctm/fjsePH6NFixbo3r072rZtK+nDrbIj9C/2y5cvY+PGjdi6dSvS09Ph7++Pvn37ijaWSOr4GpqP/OcsIsTqgbly5Ypoz3KScx6KnTt3YuvWrbh9+zYAaC9bdOzYUbQcycnJ2LVrF9atW4ezZ88iPT0d8+bNQ79+/QTfXqu5FJYVMU7SOX0eW6NGjQzOoZkI08PDAxs2bJD88rIUvYaaMRdA9kXSlClTRMsJvJ/+Ydu2bVi3bh3Onz8Pd3d3XLt2zeB4arUaT58+1d52/PHQhWfPnqF48eKCn2qflpaGmTNnom/fvpJMfKpRr149mJqaYty4cShevLjev5dq1aoJTyLKUGAjZ8gdI0REdevWpeXLl0s6hX1uGHocH0tJSaFFixaRhYUFqdVqqlatGq1bt060Wwqlir9p0yaqWrUqWVhYkIWFBXl4eNDmzZtF2eePfeq5TrGxsbm+A+7jW1JNTEyoSpUqeremGsrExIR+/PFHvTvaxLyNMz09nTp37kwqlYoqVqxIbdu2pbZt21KFChVIrVZTly5dBLfzxYsXafDgweTg4EC1atWixYsX09OnT0U9jrxwx5ZYnj9/Tp06dSIHBwcaNmyY3mMexCTWOehz5tDcfWZjY0NqtZpGjhypcyu9oVQqFT179kz788fH8fTpU9GmMbCxsaF79+6JEisr1tbWorwv2eFLSDlgyF/qqampqFixIvz8/LRdgEqXmpqKPXv2YMOGDTh27Bi+/PJL9OvXD48ePcKPP/6I48ePC5pBVcr4CxYswKRJkzB06FDUq1cPAHD27FkMGjQI//77LwICAgze7w+9fPkSXbp0wcmTJ6FSqRAdHQ03Nzf069cPBQsWxPz58wHAoL90P+yOB4C2bduKsctav/zyC9avX4/ixYujdevW+Pbbb+Hn5ydqjsWLF+P48ePYv38/vvrqK511+/fvR58+fbB48WKdCdtyq06dOhg2bBjOnz+vvbNGbEJ6PfIaqSfCNAaZzbx86tQpeHt7o2/fvoIfGyG3Zs2a4fTp03B1dZUsh7u7u6CJFnNE0vLISBha0dvZ2dHdu3cl2CPDGHocly5doqFDh1LhwoWpaNGimf7FcfXqVYOflCp1fKL3D2PbtGmT3vKNGzeSq6urwXE/9u2335Kvry89fPhQ5/0OCQkhd3d30fJIScp5KDw8PGjdunVZrl+7di15eHgIyuHj40O2trbk7+9Phw8f1vboSDEhmJSym1Tww5cQckyE+SGl9sBYWlpSjx49KCQkhNLT07XLxfxMqdVqnYnfNJN6aojZA6OZkG/kyJEUHBwsyZOiT5w4Qd7e3vTHH3/Qv//+S3FxcTovMXAB84G0tDT6+++/9R5Tf+bMGYOektuzZ09asGCBWLuXpU2bNmW6f8nJyTpf2lu2bKGEhIRcx1er1eTr60s7duyglJSUTLdJSEig3r175zq2HPGJiCwsLLKcyM7CwsLguB8rVqwYRUREEJHuifTOnTuCJ8x7+/Yt7du3L9NJC+Pi4mjfvn2iPM1ZIyMjg0JCQqhTp05kYWFBJUqUoGHDhgmKaWlpSQ8ePMhy/f379wUVqhqxsbE0depUcnV1pWLFitEPP/wg6iRzchQXKpWKXF1dacqUKbR3794sX4aSYyLMxYsX67wsLS1p0qRJesvFJEUBI8fMyyqVSmfit48vEXt4eIj3FGc5nhT90YSbUszona8H8Y4YMQIeHh7o168f0tPT0ahRI5w7dw7W1tY4ePAgGjduLCj+jBkzMH/+fDRr1gw1a9aEjY2Nznqx5hsxMTHBkydP9J458fLlSzg6Ogoe7f3gwQNJ7x6ROj7wfvJCf39//PjjjzrLZ8yYge3bt+Pq1aui5LG1tcXly5dRvnx5nQGLFy9ehK+vL16+fGlw7MWLF2P//v04ceJEpuubN2+Odu3aYejQoQbnyMrLly/xyy+/CJ6HolChQjh16hQ8PT0zXX/16lU0bNhQ1AcIHjt2DBs2bMCePXvg4uKCjh07omPHjoIGh6vVapQuXRq9evXK9kn2Qi7zXbx4EevWrcO2bdtQpkwZ9O3bF927dxftdnM5JsLMyQBzoVMXfDyx29ixYzF69Gi9S/dCz7eap47v3LkTFSpUQI8ePTBmzBhcuXJF+8BNIT4cjJwdsQcjS+VTg9BFuQwrShmkUCVKlKALFy4QEdGePXvI2dmZbt26RRMnTtSbttsQrq6uWb7KlCkjOL6GHM+cULpdu3aRiYkJ+fr60rRp02jatGnk6+tLpqamtHv3btHySPlcpy+++EJvuvQPHThwgL744gtBOTRevHhBFy5coIsXL9K///4rSkwiolatWtGgQYOyXP/dd9+Rn5+faPk+9OrVK1qyZAlVr15d8F+AFy5coEGDBpGDgwN5eXnR0qVL9XpuxfL27Vv65ZdfqGnTpmRtbU1dunSho0ePCo4rZrt+TtmdZ6U43/7333+0evVq8vb2JpVKRY0bN6bVq1eL9swllnP5ugfG0tISMTExKFmyJAYOHAhra2ssWrQI9+7dQ7Vq1XI8kdTnopn/IDIyElWqVNEZfJeeno579+6hZcuW2LFjx2fcy7zj0qVLWLhwIW7cuAEAqFy5MkaOHJntX9C5de3aNTRr1gw1atTAyZMn0aZNG1y/fh2vXr1CWFgYypYta3DsggULIjIyMssJoGJjY1GtWjVBvRfXr1/H4MGDERYWprO8UaNGWLFiheBBsefOnUPjxo3Rrl07jBo1CpUqVQIR4caNG5g/fz727duHP/74QzvQWiqXL18W5fb8d+/eYdeuXdrHCHz99dfo168fWrRoIcJe6rt37x769euH06dP48WLF4LmU9m8eXOOthP61GAiQkxMDFJSUlCxYkWd85TS3bhxA2vXrsWvv/4q2czLp0+fRmJiIry9vUWd7DExMRGnT59GbGys3mM1xLo68ObNG6xbt057zq1SpQr69u0Le3t7UeLn6wKmdOnSWLNmDZo1a4YyZcpgxYoVaN26Na5fv4769euL1o2dkpKCe/fuoWzZsqL+45XzmRMs56R6rpOtrS1OnTqFmjVrZrr+0qVLaNy4ca6fXaLx9OlTVK1aFUWLFsWgQYO0xUVUVBTWrFmDly9f4tq1a3qXKnNrz549GDhwIF69eqWzvGDBgli1ahU6dOggKP6nXLlyBbVq1RLtWUgaYhYXH3v06BE2btyIjRs3IikpCT179sSMGTMEnU+y+zJUqVRITExEWlqaoEvQ9+7dQ5s2bRAVFQUAKFGiBH777Tft7K9i+dxFUlpaGvbv3y9o5uU5c+YgISEB06dPB/D+mPz8/HD06FEAgKOjI06cOIEqVaoI3t+///4brVq1QlJSEhITE1GoUCH8+++/sLa2hqOjoyizkWsum1tZWaF27doA3s/2+/btWxw9elSc+b0+W99PHjBlyhSyt7enSpUqUalSpbQDINetW0dffvml4PiJiYnUt29fMjExIRMTE+3AsqFDh9KsWbMExyd6P/B448aN9PjxY1HisbyrTp06NHv27CzXz5w5k+rUqWNw/DFjxlCNGjXo7du3euuSkpKoRo0aNG7cOIPjfygxMZF2795Nc+bMoTlz5tCePXsoMTFRlNifEhERIdogQiKihw8f0vTp06ls2bJUvHhxGjt2LKWmpgqOm5ycTNu2baMWLVqQpaUlffPNN3TgwIFczx+UW48fP6bvvvuOzMzMyNfXV1CsDh06UKVKlSg4OJh2795NdevWpRo1aoi0p+/dvXuXqlatqh0k6uLiQn/99ZeoObJy6tQp+v3330W5fOjl5aXz1OwdO3aQlZUVnT17ll6+fEmtW7cW7SnOjRo1ogEDBlB6erp20HNsbCw1bNiQfvvtN1Fy1K9fn3r37q3zbyE1NZV69epFDRo0ECVHvi5giIh27txJCxYsoIcPH2qXbdy4UdDofo0ffviBatasSWfOnCEbGxttAbN3716qXr264PgaFhYWstyunZycTDdv3hTl5JyVjIwM0SbE+xzWr19PO3bs0Fu+Y8cO2rhxo6DYq1atIhsbGzpw4IDeuv3795ONjQ2tWrXK4PheXl60ffv2LNdv3bpV0ER5eYUYBYwcxUWhQoWodOnSNHnyZIqOjta7DVXM21GJiOLj42nChAlUoEABqlOnjii3VRcrVozOnDmj/fnx48ekVqsNuhsyK3IUSbNnz9aObSN6f57y9fXV3mlTrFgxunbtmqAcDg4OOnfJ9e7dm7799lvtz+Hh4VSyZElBOTTs7e3p5s2b2v/X5D1//jxVrFhRlByWlpaZTmR3/fp1srKyEiVHvi5gcnr7saFKlSpF4eHhRKR7a190dDTZ2toKjq9Rs2ZNOn78uGjxPiZHT5Kcs+RKqXz58pme+E+dOkUVKlQQHL979+6kUqmocuXK1K5dO2rXrh1VqlSJ1Go1de3aVVBse3v7TG8114iOjiZ7e3tBOT6+fTarl5TEKGDkKC4+vrVVqttRU1JSaP78+VS4cGGqUKGCaHP+EL0/hqdPn+oss7GxEfUPLjmKJDl6Rz6+/btixYq0YsUK7c8PHjwQZYoBIqIiRYrQ7du3iej9OSskJISIiG7cuEHW1tai5HB0dKQjR47oLQ8JCSFHR0dRcuTrAkatVutM3azx77//inJisLKy0n4gP/xwRkREkJ2dneD4GocPH6bq1avTgQMH6PHjx6L/hSZ1T9L8+fPJ2tqaxowZo51IafTo0WRtbS3LPDpisrCwyHSK7nv37ol28tm+fTu1bduW3N3dqXLlytS2bdtse05yKqt/DxpPnz4lExMTQTk+vjvExMSESpYsKeodI1kVE5rXmTNnRJmjReriQurHFWRkZNDGjRupVKlS5OzsTKtWrRL98pRaraaYmBid99/W1pYiIyNFLfSkLpLk6B2pVq0abdiwgYjeFysqlUpnjpmwsDAqUaKEoBwaLVq0oC1bthARUf/+/al27dr066+/kq+vL9WuXVuUHMOGDaOSJUvStm3bKDY2lmJjY2nr1q1UsmRJGj58uCg58nUBI/Xtxw0aNKAlS5YQke6sikOHDhV8bflDWZ1MxfoLTeqeJKlnyU1JSSETExO6evWq4Fif4uLikulMlnv37hXt5JNTs2bNotevX+d4+8y+bD583b59W9SxI0TSTDqWVVGhpOLCELlt76pVq5K1tTWNHTuWnjx5IlkvUlbvv1htIUeRJEfvyOrVq8nGxob69u1L7u7uelN5TJ8+nb766itBOTQuXLig7Sl+9uwZ+fr6kq2tLdWoUUM7EadQycnJ9MMPP5C5ubm2vS0sLGjEiBGiTbhpPPez5YLm9mOVSoVmzZplefuxUDNnzoSfnx+ioqKQlpaGxYsXIyoqCufOncvxk2Zz4o8//hAtVmZevHiR6Z0niYmJojwr5cmTJ6hbt67e8rp16+LJkyeC45uZmaFUqVKiPL79U7p164YffvgBtra2aNiwIYD3t0EOHz4cXbt2lTz/h2bOnInOnTvDwcEhR9sTESpUqJDteiU8G0fqfw9A7ifhmj17NgYNGpTjtjBEbtv7+vXrAIC5c+fi559/1ltPIjxRW462yOxzS0Ta6RHEOI6yZcsiNDQUbm5uiI2Nxe3bt7X/voH3d4kVLlzY4PgAMGDAAJiYmODAgQNo2LCh3oR1jx8/Rt++fQXl0KhVq5b2/x0dHRESEiJK3A+Zm5tj8eLFmDVrFu7cuQPg/ftobW0tWo58WcBoHooXEREBX1/fLG8/Fqp+/fqIiIjA7Nmz4eHhob11LDw8HB4eHoLja0j9YLlatWrh999/x7BhwwD8/we8rV27Ft7e3oLjlytXDjt27NCbJXf79u0oX7684PgAMGHCBPz444/45ZdfRL299WPTp0/H/fv3dQrjjIwM9OzZEzNnzpQsb2YolzMkyPFlIwdjKC4MkRfbW462kOM4hgwZgqFDh+LMmTM4f/48vL294e7url1/8uRJUeaT6tu3b5ZFyv/+9z+dn+X43IrB2tpa1O+7D+XreWA2bdqELl26wNLS8nPvimBSThh09uxZ+Pn5oUePHti4cSO+++47nZ6krOYlyanffvsNXbp0QfPmzbUTmIWFheHEiRPYsWMHvvnmG8HH4OXlhZiYGKSmpqJ06dJ6j3W4fPmy4Bwfun37NiIjI2FlZQUPDw/JH5WQmQ8fZSAFMU6gUu9jTtjZ2SEiIkLSfZDjOJXQ3p8iR1sYehzr16/HgQMH4OTkhClTpsDJyUm77vvvv0eLFi1EOVfllJD36tmzZxg1ahROnDiB58+f6xW/QnqrctpLtH79eoNzaOTrAkYjJSUFz58/R0ZGhs7yrGY8zanLly/DzMxMW33u27cPGzZsgLu7O4KCgkSbYE6OCYPu3LmD2bNn60zONnbsWNEqa6lnyf3Uc0aU8nyR3JD6C82QE+jHs1uXLFkSZ8+ehaurq15suRhDcSFHDmMp9PJykZQbQt4rPz8/xMbGYujQoShevLjepWEhz/DSPCfMy8sr217BPXv2GJxDI19eQtKIjo5G3759ce7cOZ3lYlwzBYDvvvsO48aNg4eHB+7evYsuXbqgffv22LlzJ5KSkrBo0SJB8TUCAgLQpk0brFmzRnvZIi0tDf3798eIESMQGhoqOEfZsmWxZs0awXGyUrNmTfz666+SxZeyQAkMDMT06dNhY2ODwMDAbLddsGCBZPshN0P+9nFwcNA5WX44VkHzsxj/9pj4jOVvXTmOQ45LhkKcPXsWZ86cQfXq1UWPPXjwYGzduhX37t1Dnz590KNHD8ku2+frAqZ3794wNTXFwYMHM61Chbp9+7b2A7Jz5040atQIwcHBCAsLQ9euXUUrYC5evKhTvACAqakpxowZozNYS4iMjAzExMRk2lP14WA2Q/Ts2RNNmjRBo0aNJP2r6M2bN9i1axfu3LmD0aNHo1ChQrh8+TKKFSuGEiVKGBz377//1j4D5e+//85yOyUMgJWasYyzYSw7eb3Yc3FxkWwfly9fjgULFmD37t1Yv349xo8fj9atW6Nfv37w8fER9TyYrwuYiIgIXLp0CZUqVZIkPhFpv+yPHz+Or776CsD7D8+///4rWh47OzvExsbqHcfDhw9ha2srOP758+fh7++PBw8e6H3oxfhr2dzcHLNmzUK/fv1QokQJNGrUCI0bN0ajRo1EG8R75coVNG/eHPb29rh//z4GDBiAQoUKYffu3YiNjc3xg+0y8+GXcl76gm7QoAGsrKw+927oyIsDbI1FXmxvljctWrQI48aNw6pVq/Qu34rBwsIC3bp1Q7du3fDgwQNs3LgR33//PdLS0nD9+nWdG2eEyNcFjLu7u6iFxMdq1aqFGTNmoHnz5jh9+jRWrFgB4P0DzooVKyZani5duqBfv36YN2+e9nbksLAwjB49Gt26dRMcf9CgQdo7kaToqVq7di0A4J9//kFoaChOnz6N+fPn47vvvkPx4sXx6NEjwTkCAwPRu3dvzJ07V6eoa9WqFfz9/QXH1/j111/Rvn17UW8VzExOesQOHTok6T7IIa93xeeU0OIiv7Q3k07BggV1zt2JiYna25rNzMx0tv34QatCqNVqqFQqEJHol4bzdQEzZ84cjBkzBjNnzoSHh4deIwodSLho0SJ0794de/fuxYQJE1CuXDkAwK5duzKd98RQ8+bNg0qlQs+ePZGWlgbg/dwngwcPxuzZswXHj46Oxq5du7T7L5WCBQuicOHCKFiwIBwcHGBqaoqiRYuKEvvChQtYtWqV3vISJUrg6dOnouQA3o9HGjRoENq0aYMePXrA19cXJiYmosUHpO8Ry0vk6IrP68VFfmpv7kXKudy+V2INWciJ5ORk7SWks2fP4quvvsKyZcvQsmVLqNVq0fLk6wKmefPmAIBmzZrpLBdrIKGnpyeuXr2qt/znn38W9UtN6gmD6tSpg5iYGMkKmB9//BGnTp3C33//jcqVK6NRo0YYN24cGjZsiIIFC4qSw8LCQu8OGOD9OCWxiiTg/aR8ISEh2Lp1Kzp37gxra2t06tQJ3bt3F61olbpHLKeU8GVjDMWFsbR3XulFyq+f2169eom2f9n5/vvvsW3bNri4uKBv377YunUrihQpIkmufH0b9admw5V6gjgpPHz4EMD7cTZi2bNnDyZOnIjRo0dn2lPl6ekpKL5arUbRokUREBCA9u3bZzsbrKH69++Ply9fYseOHShUqBCuXLkCExMTtGvXDg0bNpTkr5OkpCTs2bMHwcHBOH78OEqWLKktMIWwsbFBZGSkpD1iUg7azg0ht4rKUVxUr14dFSpUwNSpUzMtLsSYh8kY2luuXqS88rlt1aoV1q1bh+LFi+f6d6V8rx4/fowFCxZg8uTJelcY4uLiMGPGDIwaNUrQEAe1Wo1SpUppZ7zPyu7duw3OoZGve2CUWKBkJi0tDVOnTsWSJUuQkJAAAChQoACGDRuGKVOm6BUcuaWZlfjDCYo01zTFOPn8/fffOH36NE6dOoX58+fD3NxcO5C3cePGohQ08+fPR8eOHeHo6Ii3b9+iUaNGePr0Kby9vfHTTz8Jjp8Za2tr+Pr64vXr13jw4IF2jhuhpO4RM5ZLFnL0XMhxedUY2luOtshLRZKQniQp36sFCxYgPj4+0+ER9vb2+O+//7BgwQLMmTPH4Bw9e/aUr5dQlCcqKVhoaCh1796dvL296dGjR0REtHnzZp3Hs+d1gwYNIkdHR1q5ciVFRkZSZGQkrVy5kpycnGjQoEGC49+/fz/bl9giIiKoV69eZGpqKvrDA8+cOUPLly+nOXPm0LFjx0SNrZGYmEi//vor+fn5kbm5OZUtW5YmTpxIN27cECX+7t27yd3dnTZs2EAXL17UtrnmJVS1atWoU6dOFBUVRa9fv6Y3b97ovOQk5GGP1tbWFB0dLfIe6WrSpAkdPnxY0hzG0N5ytIUcxxEeHk5lypTRPojy4wfpikHK96pKlSrZfreFhYWRu7u7JLmz8vDhQ0pPTzfod/N1AbNr1y6ysrKi/v37k4WFhfZEuXTpUvLz8/vMe5dzdnZ2dOjQIb3lv//+O9nZ2X2GPcqZ06dPU2pqKmVkZNClS5do/vz59PXXX1PBggXJxMSEvLy8aMSIEZ97N3OlS5cuZGNjQ0WLFqUhQ4bQuXPnRM/x8YlTc/IU6yQqx5dNTvn5+dHjx48N+l1jKC6IjKO95WgLYymSpHyvrK2t6cGDB1muf/DgAVlbW0uSOyu2trYG/5GSry8hzZgxAytXrkTPnj2xbds27fJ69ephxowZguNPmzYNo0aN0htM+/btW/z888+YPHmy4BzA+wGqmd3LX6ZMGVEeV7Bz505s3boVt2/fBgBUqFAB/v7+6Nixo6C4TZo0wZMnT1CxYkUkJCSgWrVqaNSoEQYMGIAGDRqIfuvsiRMn9B5XMGLECO1gbjGYmJhgx44dktx9pHHv3j1J4mpIfclCQ+qu+GHDhmHkyJF4+vSpJGO3AOkvrwLG0d5ytIUcxyHHJUMp3ysrKyvcv38/y8fk3L9/X/YBziRgGG6+HsRrbW2NqKgouLq66gwWvHv3Ltzd3fHu3TtB8U1MTPDkyRM4OjrqLH/58iUcHR1FuyY7bdo03Lx5Exs2bICFhQWA97ex9evXD+XLlzd4Gv2MjAx069YNO3fuRIUKFbQT5d24cQMxMTHo1KkTtm7davD1TrVajadPn+LChQto0KCBpM+/+d///ofhw4ejY8eO2idonz9/Hrt27cLChQsxZMgQwTlSU1PRsmVLrFy5UrQJ+D4HqQdtA/KMV8jsdk2xi4sHDx5ku/5zPMQzt+RobznaQo7jaNq0KcaMGYOWLVsKjpUVKd+r1q1bw9nZOcvHwvTv3x+PHz+WdU4hIQP183UPjJOTE2JiYvR6L86ePSvKlPaaD9zHIiMjRX02xN9//40TJ06gZMmSqFatmjZHSkoKmjVrhvbt22u3zc3I78WLF+P48ePYv3+/dhZhjf3796NPnz5YvHgxRowYYfC+q1QqtG7d2uDfz6mZM2di4cKFGDp0qHbZDz/8gHr16mHmzJmiFDBmZma4cuWK4Dg5cefOHSxatEjbm+Tu7o7hw4ejbNmygmPL0asgx6BOqXsuAPkKFKW3txxtIcdxyNGTJOV7NWrUKLRo0QL29vYYPXq09m6jZ8+eYe7cudi4cSOOHj0qWX6x5esemFmzZuHXX3/F+vXr0aJFCxw6dAgPHjxAQEAAJk2ahGHDhhkUVzPjYVxcHOzs7HROzunp6UhISMCgQYOwfPlyUY6jT58+Od52w4YNOd7W09MTI0aMyPLx6OvWrcPixYsN/tJWq9Xw8/PT9hplRYzb7QoUKICIiAi9rt/o6Gh4eXlp794SKiAgABYWFqJMIJiVI0eOoE2bNqhevTrq1asH4P3My5GRkThw4ABatGghKL4cvQpy3BosFymLC8A42lsOchyHHD1JUlu1ahWGDx+O1NRU7fdTXFwczMzMsHDhQgwePFjW/RHSA5OvCxgiwsyZMzFr1iwkJSUBeD+eZNSoUZg+fbrBcTdt2gQiQt++fbFo0SKduSDMzc3h6uqqvYyRl1lZWeHWrVtZXi998OABKlWqhLdv3xoUX61Wo3Pnzp+85pqboisr/v7+8PLywujRo3WWz5s3DxcvXtQZAyXEsGHDsHnzZpQvXx41a9aEjY2Nznoxnkbt5eUFX19fvSJp3LhxOHr0KC5fviw4h9Tk6IoHlF9cAMbR3oD0bSEHuYo9qd+rR48eYefOnYiJiQERoUKFCujYsSNKliwpSvzc4AJGoJSUFMTExCAhIQHu7u6iPWjq9OnTqFevns5ToqX0/Plz3Lp1CwBQsWJFvbE3uVWoUCGcOnUqy27Rq1evomHDhnj9+rVB8TVjYITuZ1aWLFmi/f/4+HjMmzcP9erV0xkDExYWhpEjR2LixImi5GzSpEmW61QqFU6ePCk4h6WlJa5evao3zub27dvw9PQUPHYLkP4EKsd4BWMpLoyhveVoC8A4iiQ53qvExES9P64+FxMTE0RHRxs2bMPge59YjsTExNCECROoa9eu9OzZMyIiOnToEF27dk20HHFxcdSjRw8yNTXV3mZpampK3bt3F3RrX6tWrbKdR+a7774TdLu5Wq3WvidScHV1zdGrTJkyku2DFEqWLEk7duzQW759+3ZycXERHD8kJITMzc2pdu3aFBAQQAEBAVS7dm2ysLCgo0ePCo5PJP2twURE1atXp7Fjx+otHzt2LHl5eYmSw8LCgm7fvq23/NatW2RhYSFKDmNobznaQo7jIHp/Th86dCg1a9aMmjVrRsOGDaOYmBjR4svxXtnY2FCfPn3yxHxnarXa4Nuo810B88033+T4JdSpU6fIysqKmjdvTubm5tpGmjVrFnXo0EFwfI3OnTtT+fLlKSQkhOLi4iguLo5CQkKoYsWK1KVLF4PjhoWFkZmZGXXq1In+/PNPiouLozdv3lB4eDh17NiRzMzM6OzZswbHV6lUkhYwn1N0dDSFhIRQUlISERFlZGSIFnvq1Knk4OBAs2fPptDQUAoNDaVZs2aRg4MDTZs2TXB8OU6gckyOaAzFBZFxtLccbWEsRZIc79WePXuobdu2ZGZmRuXLl6dZs2bRP//8I0rs3BIyWWW+K2B69+6tffXq1Yvs7OzIxcVFW7SUKlWK7OzsqHfv3oJzffnllzR//nwi0m2kP//8k0qUKCE4voa1tXWmlXRoaKjgSYl2795NRYoUIbVarfMqXLgw7dq1S1DsU6dOUWpqao63r1q1KsXGxgrKKbV///2XmjZtqu1J0LR5nz59KDAwUJQcGRkZtGDBAipRooS296JEiRK0aNEiUQolOU6gcjCG4oLIONpbjrYwliJJjvdK4/nz5zR//nzy8PAgU1NTat26Nf3222+5Oi8LxQWMgcaMGUP9+/entLQ07bK0tDQaOHAgjRo1SnB8Gxsbunv3LhHpNtK9e/dE/SJwcXGhK1eu6C2PjIwUpVBKTEyk3bt305w5c2jOnDm0Z88eSkxMFBw3t3L7QQ8ICKCEhATt/2f3Esu3335Lvr6+9PDhQ539DQkJkWSK7vj4eIqPjxc1plwnUKm74o2huPiYUttbjrYwliJJjvcqM0uWLCELCwtSqVRUtGhRmjRpkizneS5gDFSkSBG6efOm3vKbN29SoUKFBMcvUaIEhYWFEZFuI+3evZvc3NwEx9dYtWoVNW/enJ48eaJd9uTJE/Lx8aGVK1eKludTpO4hye0HvXHjxvT69Wvt/2f1atKkiWj7WKxYMYqIiNDb3zt37pCNjY1oeaQkxwlUjq54Yygu5GAshZ6xFElyfm6fPn1Kc+bMocqVK5O1tTV1796dTp48SZs3b6YqVapQixYtRM2XGS5gDOTg4EB79+7VW753715ycHAQHH/kyJFUv359evLkCdna2lJ0dDSdPXuW3NzcKCgoSHB8jerVq1OBAgXIzMyMypYtS2XLliUzMzMqUKAAeXl56bykJOSDKFX8O3fuSPJllZUCBQpo/0L7cH8vXLggqCj28vKiV69eEdH79v64XcVsYzlOoHJ0xX9IacWFsbX3h6RqC2Mpkj4k1Xv122+/0VdffUVmZmZUrVo1Wrp0qfaPPY2YmBgyMzMTPffH+FlIBurTpw/69euHO3fuoHbt2gCAP//8E7Nnz87V5HBZ0czw6uLigvT0dLi7uyM9PR3+/v6i3bYLAO3atRMtlrEpX768zuMcunTpgiVLlmhnoBRbgwYNsHnzZu08QiqVChkZGZg7d262t1h/Stu2bbUT/knd3iqVCgEBAQgICMB///0H4P1cDWK6ceMGduzYobdcM3eS2MTc/xo1auDEiRMoWLAgvLy8sp1F2NDbqI2tvT8kVWw5jmPSpEmwtbXF/PnzMX78eACAs7MzgoKC8MMPP4iaC5DuverTpw+6du2KsLAwfPHFF5lu4+zsjAkTJkiS/0PEz0IyTEZGBubNm4fFixfjyZMnAIDixYtj+PDhGDlypGgP44uNjcW1a9eQkJAALy8vRT8nJztCJiSSKv7Hc81IvY/Xrl1Ds2bNUKNGDZw8eRJt2rTB9evX8erVK4SFhSlqPgopubi4YMGCBejUqZPO8h07dmDUqFGIjY01KK4cxcXUqVMxevRoWFtbY+rUqdlua+hzyIyBHG3xOYlZJMn9XiUlJek9ZPhzefjwIZydnQ36vs3XPTBqtRpjxozBmDFjEB8fDwCSPFCwVKlSWc5my4xL1apVcfv2bSxbtgy2trZISEhA+/btMWTIEBQvXvxz716W5D6BDhgwAAMHDsTdu3dRt25dAO8n65ozZw4CAwMNjitHz8WHRYlSCxRj6UX6nEWSmL0jcrxXmu+4rH7+kBjfg+/evcPSpUvxxx9/ZPrEeU17uLi4GJwjXxcwH5KicElPT8fGjRtx4sSJTBtQjFlZgfeFWHb/cPP68zk2b96MLl266D0TKSUlBdu2bUPPnj0BvH+GR24v/ahUKr33RooHB37I3t5e0q5XzbO2PqZSqWBpaYly5cqhd+/euboMKuclC0C6rnhjKC4+ptT2lqMtjKVIkuO9cnBw+OS5j0R8plO/fv1w9OhRdOzYEbVr15bkvJuvLyE9e/YMo0aN0hYYH78VQhtx6NCh2LhxI1q3bp3pE3cXLlwoKL7Gvn37dH5OTU3F33//jU2bNmHq1Kno16+fKHk+xdDLMyYmJjrjVDRevnwJR0dHQe3w8QMjDxw4gKZNm+pNoy30gZH//vsvEhMTdZ6Fcv36dcybNw+JiYlo164d/P39BeXQWLhwIX766Sf4+flpx2799ddfCAkJQUBAAO7du4dffvkFS5cuxYABA0TJKSU5xl1IRYri4mPG1t5KYyyXDE+fPp3jbRs1aiQ4n729PQ4dOqR9HIIU8nUB4+fnh9jYWAwdOjTTAqNt27aC4hcpUgSbN29Gq1atBMUxVHBwMLZv365X4ORWTntIgoOD0bZt21w/Y0OtVuPZs2coWrSozvLIyEg0adIEr169Mnjfc/rFIfSBkd26dYOzszPmz58P4P1zqSpVqgRnZ2eULVsWhw8fxrp16/Dtt98KygMAHTp0QIsWLTBo0CCd5atWrcLRo0fx22+/YenSpVi9ejWuXr0qOJ9SGUtxYQztLUdbGAtjea/c3d2xbds2UZ5rlpV8XcDY2trizJkzqF69uiTxnZ2dcerUKVSoUEGS+J9y9+5deHp6IiEhQVAcqXpINN2xkZGRqFKlis5DL9PT03Hv3j20bNky07tVpPLo0SM4OztDrVbn6vfKlCmDjRs3av9ymTdvHlauXImbN2/C1NQU8+bNw65du3D+/HnB+1igQAFERESgXLlyOstjYmJQvXp1JCQk4M6dO/D09ERiYmKu40t1ApV7vIKxFBdKbe8PydEWxvLFL1eP25s3b/DXX39lOrxB80epEIcPH8aSJUuwcuVK0Z7S/bF8PQbGxcVF0C1cnzJy5EgsXrwYy5Ytk3zcxcfevn2LJUuWoESJEoJjaa6LfuzRo0ewt7c3OK7mmnVERAR8fX11ngJubm4OV1dXdOjQweD4hnB3d0dERESuL4M9ffoUrq6u2p9PnjyJ9u3ba4uyNm3aYNasWaLsY6FChXDgwAEEBAToLD9w4AAKFSoE4P3TZg29JDN58uQsT6BDhgzBvXv3MHjwYKSlpeXqBCr3OJuzZ89ixowZ2RYXnp6eWLJkicFfBEeOHMGcOXP0ljdr1gwjR44EALRq1Qrjxo0zKD6g3Pb+kBxtIcdxyFEkyfFeHThwAN27d0dCQgLs7Ox0jkmlUolSwNSqVQvv3r2Dm5sbrK2t9Z44L6RnXUv4NDTKdeTIEfLx8aF79+5JEr9du3Zkb29PZcqUoa+++kr0h0VqODg4UMGCBbUvBwcHMjExIVtbW9q3b5/BcTUTaKnVavLw8NCZPMvT05NsbW2pU6dOgvd/48aN9O7dO8FxxGDoZHyOjo7aGXiJSO9ZUbdv3xZtJt7Vq1eTiYkJff311zR9+nSaPn06tWnThkxNTWnt2rVERDRv3jzq3LmzQfHbt29PK1as0Fu+cuVKat++PRG9n3a8atWqhh+EDGxsbCg6OlpveXR0tLYtYmJiBD0vzMXFhRYsWKC3fMGCBdqZWSMjI6lYsWIG5zCG9pajLeQ4jgULFlDhwoWpR48etGTJElqyZAn16NGDihQpQj/99BP179+fLCwsaPXq1QbnkOO9Kl++PA0fPlzSRwU0a9aMypcvT7Nnz6YNGzbQxo0bdV5iyNc9MF26dEFSUhLKli0rSYXo4OCAb775RlCMnPh44i+1Wo2iRYuiTp06KFiwoMFx5eoh0fR61KlTR2f5n3/+CRMTE9SqVUtwDql9+eWXWLJkCdasWYPdu3fjv//+Q9OmTbXrb9++Leh2wQ8NGDAA7u7uWLZsmXbwccWKFXH69GntLcmav/4NIUevghyk7rkA3t9NNXjwYPzxxx/av/ovXLiAQ4cOYeXKlQCAY8eOCRoUaQztLUdbyHEccvSOyPFe/fPPP/jhhx8knQvm3LlzCA8PR7Vq1STLka8LGClm/NRIS0tDkyZN4OPjAycnJ8nyAECvXr0kiasZUe/q6oquXbvqDeIVy5AhQzBmzBi9Auaff/7BnDlz8Oeff0qSV0zTp09Hs2bN8OuvvyItLQ0//vijTvG4bds2UUb2a9SrV0+y0f1ynEDl6Io3huJCQ+ntLUdbGEuRJMd75evri4sXL0o2oScAVKpUCW/fvpUsPpDPCxipvvgBwNTUFIMGDcKNGzckyyHXrbtS95BERUWhRo0aesu9vLwQFRUlKLZcPD09cePGDYSFhcHJyUnvveratSuqVKkiWr47d+5gw4YNuHv3LhYtWgRHR0ccPnwYpUqVEpxHjhOoHOMVjKG40FB6e8vRFsZSJEn1Xu3fv1/7/61bt8bo0aMRFRUFDw8PvasPbdq0MXj/NWbPno2RI0fip59+yjSHKHOviXIhSsFiYmJowoQJ1LVrV3r27BkRER06dIiuXbsmOHajRo1oz549guNkpWvXrhQYGKj9+dmzZ1SwYEGqUqUKtWnThszMzGjz5s2C83zxxRe0c+dOveW//fYb1a5dW3D8QoUK0blz5/SWh4WFifJQzdwQ8mAxIqJNmzZlOp4nOTmZNm3aJGTXtE6dOkVWVlbUvHlzMjc31+7vrFmzqEOHDqLkOHv2LHXt2lU75qlr167aJ6uLwVjG2RD9/3NIt27dRD+HEBlHe8tF6uOQejySlDQPuPzUS61Wi5pPrVbrvMTMka8LGKlPDNu3byc3NzdaunQpnTt3jiIjI3VeQrm6utKpU6e0P//8889UtmxZSk1N1f5cp04dwXlsbGwy/VK/e/cuFShQQHD8rl27UqNGjejNmzfaZa9fv6ZGjRqJMkg4N4Q+UVutVmu/xD7077//ivaP9ssvv6T58+cTke7+/vnnn1SiRAlRckhNjoGKmhhKLy6Mob2JpG8LuchR7BnDe3Xq1KlsX2LI1wWM1CeGrKpbsSpQS0tLun//vvZnPz8/Gj16tPbnW7duUaFChQTnkbqH5NGjR+Tm5kb29vbUuHFjaty4MTk4OFDFihUpNjZWcPwPRUdHU0hICCUlJRERUUZGhs762NhYSktLMzi+SqWi58+f6y2PiIigggULGhz3QzY2NnT37l0i0v3c3rt3jywsLETJIfUJVI67d4yluDCG9pajLYiM54tf6vdKjp5iOeTrAkbqE8P9+/ezfQkl1627cvSQJCQk0KpVq+j777+nkSNH0qZNmyglJUWU2ETve0CaNWumLR41bd2nTx+dy3CGkuuWcyKiEiVKaP/i+/Bzu3v3bnJzcxMcX44TqBxd8cZSXBhDe8vRFsZSJMnxXsnRU3z69OlsX2LI1wWM1CcGqbVp04b69u1L6enptHPnTjI3N6dXr15p1x88eJAqVaokOI+cPSRS+fbbb8nX15cePnyo09YhISHk7u4uOH5QUBAFBQWRSqWiUaNGaX8OCgqimTNnUnBwMCUnJwvOQ0Q0cuRIql+/Pj158oRsbW0pOjqazp49S25ubhQUFCQ4vlyXLKTuijeG4oLIONpbjrYwliJJjvdKjp7irK5AaF5iyNcFjNQnBiKizZs3U926dal48eLaXpeFCxfS3r17BceOjIykIkWKkLm5OanVapo4caLO+h49etB3330nOA+R9D0kRETXr1+nw4cP0759+3ReYihWrJi2t+rDk8KdO3dEm2CO6P2kfG/fvhUtXmaSk5Opf//+ZGpqSiqViszMzEitVlOPHj2045+EkOMEKgdjKC6IjKO95WgLYymSpHyv5OwpfvPmjc7rxYsXdPToUapTpw4dP35clBz5uoDJ7sQgZByExv/+9z8qUqQIzZgxg6ysrLQfxA0bNlDjxo0FxycievHiBe3du5fOnz+vt+7gwYPaf9B52Z07d8jT01NnjNCH1boYChQoQLdv39b+v6YtLly4IMo4oQ+9fv2a1qxZQ+PGjaOXL18SEdGlS5fo0aNHouaJjY2l33//nbZv3649NjHI1TMpdVe8MRQXH1Jye8vRFsZSJEn5XsnZU5yVU6dOUY0aNUSJla8LGI0HDx5IcmKoXLmy9jbqDz/sV69epcKFC4uWRy5S9ZB89dVX1LZtW3rx4gUVKFCAoqKi6MyZM1S7dm0KDQ0VYc/fD3DW9FAVKFCA7t69S+np6dSpUydRr49HRkZS0aJFqVy5cmRqaqpt8wkTJtC3334rWp7M/Pbbb+Th4SE4jhxfNnJ0xRtDcZEdJbW3HG1hLEWSHO+VHD3FWblx44Zovd5cwPyfjIwMvTtShPrwLqEPP+y3b98mS0tLUXMdP36cxo8fT/369aM+ffrovISSuoekcOHC2tvK7ezs6ObNm0REdOLECapevbrg+ETvi0ZHR0dq2bIlmZubU8eOHaly5cpUrFgxiomJESUHEVHTpk21d4J92OZhYWFUunRpwfFXrlxJHTp0oG7duml73TTvk7W1NQ0aNEhwDjlOoHLeGqzk4sJY2ltDyrYwliJJQ47PbXJyMj18+JAePHig8xLDx9OGRERE0OHDh6lRo0ZUr149UXLk+wJm7dq1VKVKFTI3Nydzc3OqUqUKrVmzRpTYlStX1o51+fAkvWTJEvLy8hIlB9H7bkG1Wk21a9emtm3bUrt27XReQkndQ+Lg4KDtlnVzc6OTJ08S0ftLDFZWVoLja7x584ZmzJhBnTp1Ij8/P5owYQI9fvxYtPhE7wswTUH0YZvfv39fcBfzrFmzyMzMjGrWrEk2NjZkbW1NP/30Ezk5OdGsWbN0BnCLQcoT6OccZ6OU4sKY2jsrYrXFh5ReJGVFzPfq9u3bVL9+fUknmfv4D17Ny9vbm27cuCFKjnxdwEyaNIlsbGxo3Lhx2ssh48aNowIFCtCkSZMEx1+zZg2VKFGCtm3bRjY2NrR161aaMWOG9v/F4uTkJMqMu1mRuoekfv362ktt3bp1o5YtW9LZs2epZ8+eVKVKFcHx5VS0aFG6fPkyEel+MR89epRKliwpKHaFChW0T3ENDQ0llUpFrVu3poSEBGE7nUNinkCl7oo3huLCWNpbjl6k7CipSJLrvapbty41bNiQDh06RH///TdFRETovMTw8bQhsbGxol+2ytcFTJEiRSg4OFhveXBwsGhjVH799VcqV66ctvosUaKEdp4LsRQqVEjUyyAfk7qHJCQkhH777Tciej/RXMWKFUmlUlGRIkXoxIkTguMTEa1fv5527Niht3zHjh2iPdqdiKhfv37Url07SklJ0Y61efDgAXl5edHw4cMFxba0tNS5bd3c3JwuXrwocI91yXUClbIr3liKC2Nob7l6kYyhSJKzx83a2lq0XpDsSDm0gSifFzD29vaZVs+3bt0ie3t7UXMlJiZmOnGQGMaMGUPTpk2TJDbR5+khefnypahjksqXL68tvD506tQpqlChgmh53rx5Q82bNycHBwcyMTEhFxcXMjMzo4YNGwr+cvt47gZNgSQWOU+gUnbFG0txYQztLUdbGEuRJGePW61atejMmTOix/2Q1EMbiIhURETCHwmpTMOGDYOZmRkWLFigs3zUqFF4+/Ytli9fLih+06ZNsXv3bjg4OOgsj4+PR7t27XDy5EmDYwcGBmr/PyMjA5s2bYKnpyc8PT31nvr58fHl1pEjR5CYmIj27dsjJiYGX331FW7fvo3ChQtj+/btaNq0qcGxU1NTYWVlhYiICFStWlXQfmbH0tISN2/ehKurq87y+/fvo3LlyqI/9v3s2bO4cuUKEhISUKNGDTRv3lxwTLVajYEDB8La2hoAsHz5cvTo0QP29vY62xna3hUrVsSPP/6IXr164cyZM2jUqBFatWqF7du3w8bGRvD+Z+bhw4e4evUqEhIS4OXlhfLlywuOaWVlhdu3b8PFxQUAYGFhgXPnzqFmzZqCY2uo1Wo8e/YMRYsWBQDY2triypUrKFOmjKg5lN7ecrSFHMcxe/ZsTJ48GZ6enrh58yaICBMmTMDSpUsxfPhwfPfddyhYsKCgHHK8VxonT57ExIkTMXPmTMmeFF28eHHMnTsX3377reBYWcn3BczmzZvh4uKCL7/8EgDw559/IjY2Fj179tRpVENOEmq1Gk+fPoWjo6PO8ufPn6NEiRJITU01eN+bNGmSo+1UKpWgQikrr169QsGCBaFSqQTHcnNzw549e1CtWjUR9ixzpUqVwrJly/QeE79v3z4MGTIEjx49kiy3WBo3bvzJ91tIe8t5As3K7t27ERQUhCtXrhgcwxiKC8A42luOtjCWIkmO9+rDXAD0Pl9EBJVKhfT0dME5ChcujL/++gtly5YVHCsrppJFVoBr166hRo0aAIA7d+4AAIoUKYIiRYrg2rVr2u1y+yX94ck3KioKT58+1f6cnp6OkJAQlChRQsiu448//hD0+zmVVQ9JoUKFRMsxYcIE/Pjjj/jll19Ejfuhbt264YcffoCtrS0aNmwIADh9+jSGDx+Orl27iprrxIkTOHHiBJ4/f46MjAyddevXrzc47qlTpwTuWfaSk5NhaWmp/dnc3FyS9li1ahWOHTsGc3NzDB8+HHXq1MHJkycxcuRI3L59Gz179hScY9KkSdriIiUlBTNmzBC1uGjYsCFu3bql/blu3bq4e/euzjZCi3tjaW+p20KO44iNjdX2NDdo0ABmZmaYOnWq6D2TUr9XGnJ8f/Tv3x/BwcGYNGmSZDnydQ+MVNRqtfbkldnba2VlhaVLl6Jv376i5IuLi0N6erreP9pXr17B1NRUcHeg1D0kXl5eiImJQWpqKkqXLq13Urh8+bLgHCkpKfj222+xc+dOmJq+r9szMjLQs2dPrFy5Eubm5oJzAMDUqVMxbdo01KpVC8WLF9f7EtuzZ48oeXLCzs4OERERcHNzy9H2cvQqyNEVL3XPRV6VF9tbjraQ4zjk6B0xts/t8OHDsXnzZsmGNgBcwAAAYmJicOfOHTRs2BBWVlbabjRDPXjwAEQENzc3/PXXX9oPPfD+rwNHR0eYmJiIsesAAD8/P3z99df4/vvvdZavXLkS+/fvx6FDhwTFX7duHXbv3i1ZD0lQUFC27/eUKVNEy3X79m1ERkbCysoKHh4eKF26tGixAXmu++aUra0tIiMjc/yFJscJ9HOMs8kLcltcGCIvtrccjKVIktubN2+wbt063LhxAwBQpUoV9O3bV++YDJXdMAexPlf5uoB5+fIlOnfujD/++AMqlQrR0dFwc3ND3759UbBgQcyfP/9z72KOFCpUCGFhYahcubLO8ps3b6JevXp4+fKloPhy9JAYCzmu++ZUbr/Q5JAXxtl8LC8WF3k1h9TkaAtD5MViT8h7dfHiRfj6+sLKygq1a9cGAFy4cAFv377F0aNHtUMr8rp8PQYmICAAZmZmiI2N1fny79KlCwIDA0UpYKKjo/HHH39kOh5i8uTJguMD768Bp6Wl6S1PTU0V5e6atm3bijJYNytubm64cOECChcurLP8zZs3qFGjht7YgpwKDAzE9OnTYWNjo3PXVmbE+stJjuu+eYUhJ1C5xl3kRj7+Gy5X5Cgu5GgLQ45D6vFIhhDyXgUEBKBNmzZYs2aN9pJ6Wloa+vfvjxEjRiA0NFSs3ZRUvi5gjh49iiNHjqBkyZI6y8uXL48HDx4Ijr9mzRoMHjwYRYoUgZOTk04RoFKpRCtgateujdWrV2Pp0qU6y1euXCnKX7ZBQUGCY2Tn/v37mY56T05OFnR30N9//6290+vvv//Ocjsxi7N3795h9erVOH78uGTXffMKQ0+gcg1UZOIylkIvrxZJcrp48aJO8QIApqamGDNmDGrVqvUZ9yx38nUBk5iYqD2RfujVq1ewsLAQHH/GjBn46aefMHbsWMGxPpWnefPmiIyMRLNmzQC8vxPmwoULOHr0qOD4UvWQ7N+/X/v/R44c0fkSS09Px4kTJwQNkvtwpL1cd21duXIF1atXBwCdO9kAcQulnJA7X07IcfdOfsXvW96R14s9Ozs7xMbGolKlSjrLHz58CFtb28+0V7mXrwuYBg0aYPPmzZg+fTqA9yeAjIwMzJ07N8fzrGTn9evX6NSpk+A4n1KvXj2Eh4dj7ty52LFjB6ysrODp6Yl169aJMjGYVD0k7dq1A/D+fe/Vq5fOOjMzM7i6uoo2DunXX39F+/btMy1YxZKeno6pU6fCw8ND8J00YsiLJ9G82BUvBzmKi7zY3ixv6tKlC/r164d58+ahbt26AICwsDCMHj0a3bp1+8x7l3P5uoCZO3cumjVrhosXLyIlJQVjxozB9evX8erVK4SFhQmO36lTJxw9ehSDBg0SYW+zV716dQQHB4saU+oeEs2YoDJlyuDChQsoUqSI4Tv7CQEBARg0aBDatGmDHj16wNfXV9Q7wQDAxMQEPj4+uHHjRp4oYA4fPix4vqHPTY6ueGMpLoyhvbkXKeeEvFfz5s2DSqVCz549teMnzczMMHjwYMyePVusXZRcvi5gqlatitu3b2PZsmWwtbVFQkIC2rdvjyFDhqB48eKC45crVw6TJk3C+fPnM52u+YcffhCcQ+POnTvYsGED7t69i0WLFsHR0RGHDx9GqVKlUKVKFYNiytVDcu/ePcExPuXJkycICQnB1q1b0blzZ1hbW6NTp07o3r279i8QMVStWhV3796VZPZM4P1lzzlz5mD37t24f/8+VCoVypQpg44dO2LUqFE6PUz169eXZB80jOWLPy8XF9ze4jOWIknIe2Vubo7Fixdj1qxZ2klcy5YtK2kPtRTy9W3UUsvuS0ylUhk8duRjp0+fhp+fH+rVq4fQ0FDcuHEDbm5umD17Ni5evIhdu3YJii9HD4lUs9dmJikpCXv27EFwcDCOHz+OkiVLav8RCxUSEoLx48dj+vTpqFmzpt4t50ImFUxJSUHdunVx7do1+Pn5oVKlSiAi3LhxAyEhIahRowZCQ0P1CmWpGMutwWfPnsUXX3yR63FvuSkuDJEf29vQtsgNOY5Djp5DOd6rvC5f98BER0dj37592pOPm5sb2rVrJ9pfz3L0LADAuHHjMGPGDAQGBuoMwGratCmWLVsmOL7Ux/Gp2WvFZm1tDV9fX7x+/RoPHjzQTuQkhlatWgEA2rRpo3McYjxjZMWKFXj06BEiIyNRsWJFnXU3b95E48aNsXLlSgwbNszgHLmRly9ZSN1zkZKSgkaNGmmLi6+//lpbXPz00084fPiw4OLCWNo7L/UiAfJ8bg3tF5D6vcrp7O9i/9EolXzbAzNr1ixMnjwZGRkZcHR0BBHhxYsXMDExwcyZMzFq1KjPvYs5VqBAAVy9ehVlypTR+evi/v37qFSpEt69eyc4h5Q9JHLNXqvpedmyZQtOnDgBFxcXdOvWDd27d9cbjW+o06dPZ7u+UaNGBsdu1KgROnfujCFDhmS6funSpdi1a9cn9yE7Uvcq5JYhfy3L0XOh6X4/ffp0lsXFhAkTBBUXxtDecvUi5bXPrSG9I3K8V2q1GqVLl4aXl1e2RZacjzwRhPKhkydPklqtpilTptCrV6+0y1++fEmTJk0iExMTOn36tEGxAwICKCEhQfv/2b3EUqJECQoLCyMiogIFCtCdO3eIiGj37t3k5uYmOH5QUBCp1WqqXbs2tW3bltq1a6fzEqpQoUIUExMjOE52unTpQjY2NlS0aFEaMmQInTt3TtJ8UihSpAhdu3Yty/VXr16lIkWKGBw/OTmZatasSRYWFtSuXTsaN24cjR07ltq0aUPm5ub05ZdfUkpKisHxDWFra6v9POfUokWLqFixYnTz5k29dTdu3KBixYrRkiVLBO1Xw4YNadmyZVmuX7JkCTVs2FBQDmNobznaQq7PbUJCAk2aNImqVKlCNjY2VKBAAfLw8KCpU6dSYmKi4PhyvFfff/89FSxYkKpXr06LFy+mly9fCor3ueXLAqZz5840cODALNcPGDCAunbtalDsxo0b0+vXr7X/n9WrSZMmBsX/0OnTpyklJYVGjhxJ9evXpydPnpCtrS1FR0fT2bNnyc3NjYKCggTncXJyos2bNwuOk5UxY8bQtGnTJItPROTv70+///47paWlSZqHiCg0NJS6d+9O3t7e9OjRIyIi2rx5M505c0ZQXFNTU3ry5EmW6x8/fkxmZmYGx5fjBJpbHxbkOWUMxQWRcbS3HG1hLEWSHO8VEdG7d+8oODiYmjdvTtbW1tSpUycKCQmhjIwMwbHlli8LGFdX12y/TEJDQ8nV1VXGPTKMWq2mZ8+eUXJyMvXv359MTU1JpVKRmZkZqdVq6tGjhyhf2FL3kPzwww/k4OBADRs2pKFDh4reU5WSkkJNmzal27dvi7C32du1axdZWVlR//79ycLCQvvlu3TpUvLz8xMUW61W0/Pnz7Nc//TpU1Kr1QbHl+sEmhtnzpyhd+/e5ep3jKG4IDKO9pajLYylSJLjvfrY/fv3KSgoiNzc3KhUqVL033//iRpfavlyEO+zZ8/g6uqa5foyZcrg6dOn8u2Qgej/rmGam5tjzZo1mDRpEq5du4aEhAR4eXmJMokdIP3zfaSevdbMzAxXrlwRHCcnZsyYgZUrV6Jnz57Ytm2bdnm9evUwY8YMQbGJCM2aNdOZ/vtDmT0PKzeioqLQuHHjLNc3adIE06ZNE5QDkH6g4ps3b/Rmjf5Q4cKFERcXZ9C+a2RkZGQ7j5BarRY0YBswjvaWoy3kOI7du3dj0qRJeuOdAKBSpUqYMGECdu3aJWjMkxzv1cfUajVUKhWISPDn9XPIlwXMu3fvYG5unuV6MzMzpKSkyLhHhvvwC75UqVIoVaqU6Dmkfr6PHNP89+jRA+vWrZN8kqZbt26hYcOGesvt7e3x5s0bQbGnTJnyyW06dOhgcHw5TqBy3L1jDMUFYBztLUdbGEuRJMd7BbyfQX337t1Yv349zp49i6+++grLli1Dy5YtoVarBceXU74sYABg7dq1KFCgQKbr/vvvP5n3xnC9e/f+5Ej33bt3C8oh5/N9NI8m+PgBm0KlpaVh/fr1OH78eKbzs4j18EAnJyfExMTo9fCdPXtW8JwQOflCE0KOE6gctwYbQ3GR0xxCGEuhZyxFkhzv1ffff49t27bBxcUFffv2xdatWyWd30tq+bKAKVWqFNasWfPJbZTA1tYWVlZWkuaQuockIyMDM2bMwPz585GQkADg/XGNHDkSEyZMEOWvgmvXrqFGjRoAgNu3b+usE7MIGzBgAIYPH47169dDpVLh8ePHCA8Px6hRoyS7BCcWOU6gcnTFG0NxIQdjKfSMpUiS471auXIlSpUqBTc3N5w+fTrLW/CF/tErl3w7D4wxUKvVePr0KRwdHWXLKUUPyfjx47Fu3TpMnToV9erVA/C+xyIoKAgDBgzATz/9JFouqRERZs6ciVmzZiEpKQkAYGFhgVGjRmkfGmooLy+vHBVbly9fNij+1KlTc7SdkC/vokWL4tSpU1k+3uLatWto0qQJXrx4YXAOY2EM7S0HOY5DrVajatWq2RZJ169fz/PjSHr37p2jz9SGDRtk2BvhuIDJAQ8PDxw6dAguLi65/t07d+5g0aJF2tle3d3dMXz4cJQtW1bwfpmYmODJkyeSFzBS95A4Oztj5cqVaNOmjc7yffv24fvvv8c///wjKP6HYmJicOfOHTRs2BBWVlbaGXLFlpKSgpiYGCQkJMDd3T3Ly5W5YQxfOGZmZnj48CGcnJwyXf/kyROULl06z49Bk7q4AIyjvY1Ffm2LR48ewdnZOc+OjcmXl5By6/79+0hNTc317x05cgRt2rRB9erVtT0LYWFhqFKlCg4cOIAWLVoI2i+5as8JEyZoB8B+3EPy7t07wT0kr169ynQm3EqVKuHVq1eCYmu8fPkSnTt3xh9//AGVSoXo6Gi4ubmhX79+KFiwoCgPpQTeT9W9ePFi2Nrawt3dXbs8MTERw4YNEzRr8ZQpU0BEePjwIYoWLSr5pUMpyNEVL0dxoXnQqZSMob3laAs5yFGY5MX3yt3dXfJnOgnBBYyExo0bh4CAAL07X8aNG4exY8cKLmD++OMPFCpUKMfbG9qTtGnTJqxdu1anh8TT0xMlSpTA999/L7iAqVatGpYtW4YlS5boLF+2bBmqVasmKLZGQEAAzMzMEBsbi8qVK2uXd+nSBYGBgaIVMJs2bcLs2bN1nkkFAG/fvsXmzZsFP3aBiFCuXDlcv35dtNvkNeQ4gcoxXsGYigult7ccbZEXv/gNIcd7lVt5/QINFzASunHjBnbs2KG3vG/fvli0aJHg+Ll9ro6hPUlS95DMnTsXrVu3xvHjx+Ht7Q0ACA8Px8OHD3Ho0CHB8QHg6NGjOHLkiN7YnfLly+PBgweC48fHx4PeTwyJ//77D5aWltp16enpOHTokCiX+tRqNcqXL4+XL1+K/oUm1xf/p4gxwFbpxYWGMbS31G1hLEWSMfS4yY0LGAkVLVoUEREReieeiIgIWQfeCiV1D0mjRo1w+/ZtLF++HDdv3gQAtG/fHt9//z2cnZ0FxwfeX8LJ7IFur169EuVx9A4ODlCpVFCpVKhQoYLeepVKlePr6J8ye/ZsjB49GitWrEDVqlVFiQnIcwKVa4yA0ouLDym5vQHp28JYiiRAns+tMeECRkIDBgzAwIEDcffuXdStWxfA+zEwc+bMQWBg4Gfeu5yTo4fE2dlZ0ruNGjRogM2bN2vvBFKpVMjIyMDcuXPRpEkTwfH/+OMPEBGaNm2K3377TefSnrm5OUqXLi1aMdazZ08kJSWhWrVqMDc31zthC+kVM5YTqNKLiw8pvb3laAtjKJIA+T63xoILGAlNmjQJtra2mD9/PsaPHw/g/Rd1UFAQfvjhh8+8dzknVQ9JdHQ0Jk+ejFWrVsHOzk5nXVxcHAYPHowZM2aIMoBs7ty5aNasGS5evIiUlBSMGTMG169fx6tXrxAWFiY4vuZy3r179+Di4iLpqH0xLj9mReoTqJzjFZReXGgoub01pG4LYyiSNOT43BoLvo06BzST/hhyG7WGZnbfjwd3ysnW1haRkZF5ZkT5wIED4eDggLlz52a6fuzYsYiPj8eKFStEyRcXF4dly5YhMjISCQkJqFGjBoYMGYLixYuLEl/jzZs3+Ouvv/D8+XNkZGTorOvZs6eouaRw4MABzJ07V5ITqJy3oxYsWBBJSUlIS0uTrLjYtGlTtut79eolOIfUpGxvDTnaQo7jqFKlCtatW4cvv/xSkviAPO9VTpmYmGjv2MyLuIDJgbz2xW+o3B6H1D0kFStWxK+//oovvvgi0/WXLl2Cv78/bt26ZVD8z+HAgQPo3r07EhISYGdnp9PboFKpRDv53LlzBxs2bMCdO3ewePFiODo64v+1d+ZxUVzZHv91q9CsCgi4oQiiRqMTE40aNYnLizviigvRiDHjJHFFReMGOgpuiZKXz+hMQEBD1PDcIhp9IUoiiruYSUgUFIl5uI9EFATa8/5wusdOiwGq6hZdnO/nU59YtzrnnrqnuP3rU3fZv38/mjZtWu4icRVF6Q5U1EBFLYgLE7Ycb0BMLLQikqrTc1vdBQy/QlKAnj17/mGaXKfTITU1VZBHj/H09KzUJnmrV6+Gj4+PlXgBHm9O6OPjg9WrV1c5Q5KXl/fMwcz169fHL7/8UiXbJm7duoX79++jWbNm5rIffvgBa9aswf379xEUFISxY8dKquNJwsLCEBoaihUrVjx10LAcpKWloX///ujWrRu+/fZbLF++HF5eXsjMzERsbCySk5Ml2VfylQUgLhUvqqNXUlwAth9vQEwsRNyHiFeG1UlYK9WHyQULGAUwbXz4NO7du4ekpCQ8fPhQnEP/5ubNm5WaRp2WloYtW7aUe33UqFGSvvzr1q2LnJwcC3HxJNnZ2U8VT5Vh6tSpaNSokXmdlxs3bqBHjx5o1KgR/P398dZbb8FoNOLNN9+UVI+JX3/9FdOmTVP0D3/evHn461//ilmzZlm8kuzVqxf++7//W7J9pTtQkQMVbV1cALYfbxNKx0IrIglQvq00AzF/iLOzM+Xk5EiyUVpaSuvWrSNPT09q0aIFff755zJ5V3Eqex8Gg4Fyc3PLvZ6bm0sODg5V9mfkyJEUFBRU7vXAwEAaMWJEle0TEfn6+tLhw4fN56tXryZ/f38qLS01n3fu3FlSHU8ydOhQ2rZtm2z2noaTkxNdunSJiCxjevnyZbK3t5eljuzsbFqwYAGNHj2arl+/TkRE+/bto3/+85+y2N+zZw91796dvv/+e1nsPY3Dhw+Tg4MD9enTh+zs7MztFBUVRcOHD5elji5dutDatWuJyDIWx48fp8aNG8tShxbiLSIWRMrfhwhEtVVFkOO7T0lYwFQAqUHcsmUL+fn5UcOGDemTTz4xf3mKprL34e3tTampqeVe//rrr8nb27vK/pw5c4bs7e1p+PDhdPz4cbp79y7dvXuXMjIyaNiwYWRvb0+nT5+usn0iaxHWv39/mjNnjvn8559/Jnd3d0l1PMmnn35KTZs2pSVLllBycjLt3r3b4pCDxo0bU3p6OhFZxnTHjh3k5+cn2b6IDrRevXpkZ2dHer2eDAYDubm5WRxyoBVxoYV4i4iFVkSSiLaqKCxgNEBVg7h//37605/+RK6urrR06VIqLCxUwLuKU9n7EJEh+fLLL8nT05P0er3F4enpKcsXvpeXF507d8587uHhQcnJyebzCxcukJOTk+R6TOh0unIPvV4vSx1hYWHUvXt3ys/PJxcXF7p48SIdOXKE/Pz8KCIiQrJ9ER1ofHz8Mw850IK4INJGvEXEQisiSURbVRQXFxcWMNWVhIQEKi4utip/+PAhJSQkmM8/++yzSomP48eP0+uvv04Gg4FmzJhBN2/elMVfqVRWwIjIkBARPXjwgHbs2EGrVq2ilStX0s6dO+n+/fuS7RI9FlmhoaFkNBrpiy++IDs7O7pz5475+t69e6l169ay1CWKhw8f0ttvv021a9cmnU5HderUIb1eTyEhIVRWVibZfnXqQKWgBXFBpI14i4iFVkSSiLaqKJyBqcbo9XpzCvBJbt26JenXsk6nI0dHR5oxYwatX7++3EM0VXkYlc6QVIbnn3+e8vLyKvX/ZGZmUv369c2vKxYuXGhxPSQkhP785z/L6aYwrly5QikpKbRt2za6cOGCbHZFdaBKp+K1IC6exJbjLSIWWhFJItqqouTl5cn+HMtJjV4HRq/X4/r16/D09LQoz8zMRM+ePas8Jc7X17dC06gvXbpUJfu/JzExEcHBwVZ7+pSUlGDr1q3mxdOSkpIwZMgQODk5Vcp+UVERvvrqK2RnZ4OI0LJlS7zxxhvCp9hVdT2eW7duIT09HQ0aNEDnzp0trqWkpKBt27bw9fWV5Nvv94kqD1tYgXn27Nk4fvw4vvjiC7Rs2RJnzpzB9evXMX78eIwfP16WReZ+P3snKysLfn5+iI6OxqlTp2SZvVNSUoL33nsP8fHxMBqNqF27NoxGI8aOHYv4+HjUqlVLch0m8vLy8M9//hOFhYXo0KGDTS0DLyLeImIh4j6aNGmC7du345VXXrHoj3bu3InZs2cjJydHch0i2qq4uBgff/wxDh069NQFN6v7zt0maqSAMS1nnpmZibZt26J27f/MJjcajbh8+TL69ev31J2kqyO1atVCfn6+1Zoqt2/fhpeXF4xGoxA/2rVrh3379klasfhZSFlQsKIir6o0b978Dz8jl2glIiQnJ5fb+ezYsUOSfREdaNeuXTFy5Ejz1GBTXE+cOIFhw4bh6tWrkuswYcviAtBGvE0oGQutiCQTSrbVuHHjcPDgQYwYMQLe3t5WP7hFbboqlRopYEzLmUdGRiIsLAzOzs7ma3Z2dvD19cXw4cNhZ2cnxB+pX/xKZZIqi9IrFkuxX11EnhxMnz4dGzduRM+ePZ/a+WzatEmWepTsQJ2dnfH999+jefPmFnHNzc1F69atUVxcLFtdSqK0uAC0EW+R2LpIEkHdunWxb98+dOvWTW1XJFEjF7IzqUtfX18EBwfDYDCo6k9ubm6lFpgzYcok6XQ69O7du9xMEvP4i+Zpr/WuXr2KunXrCvdHimjdvHkzduzYgQEDBijg2X9o2rQpmjZtqojtevXqIT8/3ypzdfbsWTRu3FiWOkSIixkzZjxTXMiBFuItIhYmlLwPOzs7/OMf/8CiRYsUE0ki2qpx48aq7ssnFzVSwJioTks2V4WgoCAAwLlz59C3b99yM0k1meoq8qoqWoHHv56U3JtERAc6evRohIeH44svvoBOp8OjR4+Qnp6O2bNny7bhpVbEhRbiLSIWWhFJItpq7dq1CA8Px4YNG8pdCd0WqNECxmg04qOPPsL27duRl5eHkpISi+sid/2sCtUtk1Qd0aLIi4iIQGRkJOLi4hTZDFFEB7pixQq899578PHxgdFoRJs2bcyp+IULF8pShxbEBaCNeIuIhVZEkoi26tixI4qLi+Hn5wdHR0erPfKq+3efiRotYCIjI/Hpp58iLCwMCxcuxIIFC5Cbm4tdu3Zh8eLFartXYWw9k1RRKrsZJaBNkTdq1Ch8/vnn8PLygq+vr1WbSJ1BIKIDFZGK14K4ALQRbxGx0IpIEtFWY8aMwa+//ooVK1Yodh8iqNEC5rPPPsM//vEPDBw4EBERERgzZgz8/f3Rvn17ZGRk2MSUV8D2M0kVpbKbUT7JhAkTcPfuXWzZsgU5OTmYM2cO3N3dcebMGXh7e8s27kIEEyZMwOnTpxESEqJI5yOiAzWhZCpeC+IC0Ea8RcRCKyJJRFsdPXoUx44dw5/+9CdF7IuiRguYa9euoV27dgAez4ooKCgAAAwaNAiLFi1S07VKUV0ySVXJkIji/Pnz6NOnD+rWrYvc3FxMnjwZ7u7u2LFjB/Ly8pCYmKi2ixUmJSUFBw4cQPfu3RWxL6IDFZGK14K4ALQRbxGx0IpIEtFWrVu3RlFRkWQ7alOjBUyTJk2Qn5+Ppk2bwt/fHwcPHsSLL76IkydPWq0XUhUquvbIxo0b4e3tXeV6qksmSUqGRGlmzpyJt956C6tWrbIYfT9gwACMHTtWRc8qj4+PD1xdXRWzL6IDFZGK14K4ALQRbxGx0IpIEtFW0dHRCAsLw/Lly9GuXTurtlLyeZOTGi1ghg4ditTUVHTu3BlTp05FSEgIYmNjkZeXh5kzZ0q2P3HiRPTr189q7ZF79+5h4sSJZgEj9QtUK5kkJTl16hT+/ve/W5U3btwY165dE+6PlGzV2rVrMXfuXGzYsEHyCsJPQ0QHKiIVrwVxAWgj3iJioRWRJKKtTDMve/fubVFuWm7CVtbFqtECJjo62vzv4OBgNGvWDEePHkVAQAAGDx4s2b6otUeUziRpAXt7e/z2229W5RcuXLBaAFAEUrJVISEhePDgAfz9/RWZQSCiAxWRiteCuAC0EW8RsdCKSBLRVocOHVLUvihqtICJioqCt7c3QkNDAQBdunRBly5dEBcXh5UrVyI8PLxKdkWvPaJ0JkkLBAYGYunSpebtIXQ6HfLy8hAeHm5z06jXrVunqH0RHaiIVLwWxAWgjXiLiIVWRJKItnrttdcUsSuaGrmVgAlfX18kJSXhlVdesSg/fvw4Ro8ejcuXL1fJrtpbFWRkZMiaSaooVV3qX+nNKAGgoKAAI0aMwKlTp3Dv3j00atQI165dQ9euXbFv374q2ZSC0tsuSCElJQUff/yxoh1oUVERhg4divT0dMVS8W5ubnjw4AHKysoUExcJCQnPvG4LSxyIiLeIWIi4j9atW2P79u1o3769IvYBMW317bffPvP6q6++KrkOEdRoAWMwGJCVlWW1nPmlS5fQpk0bSfuxGI1GbNmyBW+88QYaNmwo1dVn8vtMkom4uDjcvHmzypmkylLVL2WR+xQdOXIE58+fR2FhIV588UX06dNHNtuVQaqAMRqN2LVrF7KysgAAbdu2RWBgoCx7sYjoQEeNGoVDhw4pupmcFsSFCVuPt4hYaEUkiWgrvV5vVfbk36CtjIGp0QImICAAS5YsQUhIiEX55s2bsWTJEsk7B5cnkORGqUySCaUzJNVlM0qRSBEw2dnZGDBgAH799Ve0atUKAPDzzz/Dx8cHKSkp8Pf3l+SbiA7UyclJ8VS8KJQUF4A24i0CrYgkEZgmepgoLS3F2bNnsWjRIixfvtxqcG91pUYLmFWrVmHVqlVYvXo1evXqBQBITU3F3LlzERYWhvnz50uy37FjR6xcuVLxh0HJTBKgXIbENFYoMzMTbdu2LXeskGncilRSU1ORmpr61HVH4uLiZKmjokgRMAMGDAAR4bPPPoO7uzuAx7EICQmBXq9HSkqK3O7KjohUPGD74gLQRrwB5WMhAlFiT622SktLw6xZs3D69GlF65GLGi1giAjz5s1DTEyMefVag8GA8PBwWRaA++qrrzB//nwsW7YML730klVmQq4BZ0pnkpTKkIgcKxQZGYmlS5eiY8eOaNiwodUri507d0quAxAznsfJyQkZGRnmqfMmMjMz0a1bNxQWFlb9Bv6N0h2oiFS8VsSFFuItIhaANkSSqLZ6Gj/99BM6duwoyzMlBGLo3r17dOLECfr++++puLhYNrs6nc586PV682E6l4uVK1eSh4cHxcXFUW5uLuXm5lJsbCx5eHjQihUrqmz3hRdeoA4dOpBer6d27dpRhw4dzEf79u3JxcWFRo4cKdn/+Ph4KioqkmznWTRo0IASExMVrYOISK/X0/Xr163Kb926JVvM3dzcKD093ar8yJEj5ObmJtn+xYsXKSAggBwdHc3xdnR0pFatWlF2drZk+0RE9erVIzs7O9Lr9eTs7Exubm4Whxz079+f+vXrR7dv3zaX3bp1i/r160cDBgyQpQ5HR0c6f/68Vfm5c+fIyclJljq0EG8RsRBxH0REZWVllJycTMuWLaNly5bRjh07qKysTDb7ItoqMzPT4jh37hzt37+fXnvtNerWrZssdYigRmdglCYtLe2Z1+WaykYKZZLUnk0lJx4eHjhx4oSiv14AMeN5xo8fjzNnziA2NhYvv/wygMfjnSZPnoyXXnoJ8fHxkuyLyCqIGmejdObC3d0de/futRp/lp6ejsGDB3O8/42IWIi4DxHZERFtpdfrodPp8Puvf9MyIq1bt5ZchxBUFE+MzCiVSVI6Q1JWVkarV6+mTp06kbe3tyK/xufOnUtLly6VxdbTEJWtIiL617/+RYGBgaTT6cjOzs6cyQgKCqJ//etfku2LyCqIQOnMBRHRm2++SW3btqWMjAx69OgRPXr0iI4dO0bPP/88TZgwQZY6tBBvEbEQcR8isiMi2sqUqTcdeXl5imfBlaBGL2Qngrt37yI2NtbinWxoaKisK/GacHZ2RqdOnWS3q/QsBBGbURYXF+Pvf/87vv76a7Rv395q9sCHH34oyX5QUBAA4Ny5c+jbt2+52So5qFevHnbv3o3s7Gzzc/Xcc8+hRYsWsti3t7fHvXv3rMoLCwtlzbYpPV5h0KBBeOedd6wyF1OmTEFgYKAsdcTExGDChAno2rWr+ZkqKytDYGCgbAvQaSHeImIh4j7S0tKQkZFhzvAAj7O70dHR6Natmyx1iGirZs2aVatJDVVGbQWlZU6ePEnu7u7UuHFjGjp0KA0dOpSaNGlCHh4edPr0abXdqzBKZ0j8/Pxo7969RETk7Oxsfl+9fv16GjNmjGT7RESvv/56uUfPnj1lqYNIzHieyMhIun//vlX5gwcPKDIyUrJ9EVkFEeMVlM5cPMnFixdpz549tGfPHrp48aKstrUQbxGxEHEfIrIjItoqIiKC9Ho9vfzyyzRkyBAKCgqyOGwFFjAK0r17d3rrrbeotLTUXFZaWkoTJkygHj16qOhZ5Vi0aBE1bNiQ1qxZQwaDgZYtW0aTJk0iDw8PWr9+vWT7jo6OdOXKFSJ6PNjWJO5ycnLI1dVVsv2ysjJKS0ujO3fuSLZVHVB6oLCIDlREKt6ELYsLIm3E24SSsdCKSDKhZFuJmtSgNCxgFMRgMFBWVpZV+Q8//EAODg4qeFQ1lM6QtGzZkjIyMoiIqFu3bhQVFUVERFu3biVPT0/J9omI7O3t6dKlS7LYehYixvPodDq6ceOGVXlqairVr19fljqIlO1ARYxX0IK4INJGvEXEwoStiyQRbeXu7i7rzCy1YAGjIF5eXnTgwAGr8q+++oq8vLxU8KhqKJ0hCQ8Pp+XLlxPRY9FSu3ZtatGiBdnZ2VF4eLhk+0REL730En399dey2HoWSmar6tWrR25ubqTX683/Nh2urq6k1+vp3XfflXwPIjpQEal4WxcXWoq3iFhoRSSJaCulJzWIggWMgkydOpWaNGlCW7dupby8PMrLy6PPP/+cmjRpQtOnT1fbvQojIkPyJMeOHaO1a9fSnj17ZLO5f/9+euGFF+jLL7+k//u//6OCggKLQy6UzFbFx8fTpk2bSKfT0fr16yk+Pt58JCUl0dGjRyX7TySmAxWRird1caGleIvIImlFJIloq2nTplG9evXo1Vdfpffff59mzpxpcdgKLGAU5OHDhzRt2jRzmlGv15O9vT3NmDFD1mnOSiMiQ6I0ohYVVDpbRUR0+PBhi3FVciOiA1UyFa8lcUFk2/EWlUUisn2RJLKtRE1qUBqeRq0gdnZ2WL9+PaKiopCTkwMA8Pf3h6Ojo8qeVY7o6Gjzv4ODg9GsWTMcPXoUAQEBGDx4sGT7InbTPnTokGQbFaFJkybIz89H06ZN4e/vj4MHD+LFF1/EyZMnrbYXqCouLi7IysoyL3S1e/dubNq0CW3atEFERESVp4y6ublBp9NBp9OhZcuWVrvTFhYWYsqUKbLcg5JTg9etWwciQmhoKCIjIy2WLDBNae/ataukOkxLCzRv3hzdunWz2MdLbmw53iJiIfK5JSKrbUiAx4vMPTm1uiqIaCsTovpDpeGVeAXxyy+/AAB8fHxU9qT6ofRu2iKZN28eXF1d8cEHH2Dbtm0ICQmBr68v8vLyMHPmTAsxWFU6deqEefPmYfjw4eYNO4cNG4aTJ09i4MCBVV5/JCEhwdyBrlu3TtEOdOnSpZg9e7aVmC8qKsLq1atlWf8nLS1NcXFx5swZ1KlTR3Zx8SRaiLeSsRBxHyaRVFBQAFdX13JF0ieffCKpHkDMc6sZVMv91ABKS0tp4cKF5vSfXq8nV1dXWrBgAZWUlKjtXoVZsWIFxcbGWpXHxsZSdHS0ZPvlzRDKyckhe3t7yfZNfPvttzRu3Djq2rUrXb16lYiIEhMT6bvvvpOtjt+jxHgeV1dX89ia6OhoeuONN4jo8QDYJk2aSLav9CsLIjHjFU6fPm0x02nXrl00ZMgQmj9/Pj18+FCWOjp27EjJyclE9J/ndcyYMdSiRQvZxrlpId4iYqHkfYh8ZSiirbQCCxgFmTJlCnl5edGGDRvMm2Zt2LCBGjRoQFOmTFHbvQrTrFmzp84YycjIIF9fX8n2W7RoQZs3b7YqT0xMpObNm0u2T0SUnJxMDg4O9Pbbb5O9vT3l5OQQEdHHH39M/fv3l6UOIuXFHhGRi4sLXbhwgYiI+vTpQ+vWrSMioitXrpDBYJBsX0QHKmK8ghbEBZE24i0iFrYukkyIaCutwAJGQVxdXWnfvn1W5SkpKbIN6BSB0hkSpXbTfpIXXniBEhISiOjx7CCTgDlz5gx5e3vLUgeR8mKPiKhnz540fvx4SkxMpDp16pincR4+fJiaNWsm2b6SHajIgYpaEBdEth1vEyJioRWRJKKttAILGAXx9PSkH3/80ar8xx9/lHUBKqVROkPy6NEjmjt3LhkMBvOrNkdHR1nXbnBwcKDLly8TkaWAkfs1lYjXYZmZmfT888+Tq6srRUREmMvff/99WRYWVLIDFZmK14K4ILLteJsQEQutiCQRbaUVWMAoSGRkJI0ZM8ZiynRxcTGNGzfOoiOq7ojIkBApt5s2EVHz5s3pf//3f4nIUsAkJCTQc889J1s9Il6HlUdRUZEsY6tEdKAiUvFaEBfPwpbiLSIWWhFJItpKK7CAUZCgoCBycXGh+vXrU+/eval3795Uv359cnV1NW/uaDqqMyIyJEqzYsUKatOmDWVkZJCLiwt99913tGXLFvL09KSYmBjZ6hEl9pRERAcqIhWvBXEhAq0IPa2IJDWfW1uDp1EryMSJEyv82U2bNinoiTwUFhYiKysLDg4OCAgIkG1dExEQEVasWIGoqCg8ePAAAGBvb4/Zs2dj2bJlstYzb948xMTEoKSkBABgMBgQHh4uy9RgANDr9U9di8KE0WiUZP/8+fMYN24c8vLyMGvWLCxZsgQAMHXqVNy+fRtJSUmS7APKTQ2uCMXFxahVqxbq1KmjWB1yooV4l4ecsRBxH7169YKPjw/69OmDSZMm4ccff0SLFi2QlpaGCRMmIDc3V3Id5WFrz60IWMAwNYqSkhJkZ2ejsLAQbdq0gbOzsyL1KCn2du/ebXFeWlqKs2fPIiEhAZGRkZg0aZJsdT2JnB1o3bp1cebMGfj7+2PlypX45ptvcODAAaSnp2P06NHmdZOqO0qLC0Ab8VYTWxNJTMVhASOAGzdu4OeffwYAtGrVCl5eXip7VPMIDQ3F+vXr4eLiYlF+//59TJ06FXFxcSp5Jh9JSUnYtm2b1RdedcTV1RWnT59GQEAA/uu//guDBg3C9OnTkZeXh1atWqGoqEhyHVoWF4BtxVtELNRETpGk9baSExYwCvLbb7/hvffew9atW80PXa1atRAcHIxPPvnEYsVIRllq1aqF/Px8K/F469YtNGjQAGVlZSp5Jh+XLl1C+/btUVhYKMmOiA5URCpe6+LCluItIhZa+eJX87m1NXitYgWZPHkyzp49i71795qXsj527BimT5+OP//5z9i6davKHmqf3377DfR4sDru3bsHg8FgvmY0GrFv3z5NZMSKiooQExODxo0bS7a1c+dOi/Pfd6BysG7dOowbNw67du3CggULzHsgJScnW20pUVWGDBliVTZixAi0bdsW27ZtU/SLoEuXLnjnnXcUs29r8RYRCxH3IUIkqfnc2hqcgVEQJycnHDhwAN27d7co/+6779CvXz/cv39fJc9qDn/U4eh0OkRGRmLBggUCvZKGaV8WEyZx5ujoiC1btiAwMFCRekVkFUSMu5Arc1EeRUVFmD9/Pvbv329+dSwFLcdb6VgA8t6HmtkREW1la3AGRkE8PDye+pqobt26cHNzU8GjmsehQ4dAROjVqxf+53/+x2LHWDs7OzRr1gyNGjVS0cPK8/sZOnq9Hp6enujcubOiz5XSWQUAFhkyJZAzcwH8sbiQA63GW+5YlIec96FWdkRUW9kaLGAUZOHChZg1axY2b96MBg0aAACuXbuGOXPmYNGiRSp7VzN47bXXAACXL1+Gj48P9Hq9yh5JZ8KECcLrlLsDFZGK14q40EK8RcTiadiiSFKrrWwRFjAK8re//Q3Z2dlo2rQpmjZtCgDIy8uDvb09bt68iY0bN5o/e+bMGbXcrBE0a9YMd+/exYkTJ3Djxg08evTI4vr48eNV8qziXLx4EYsXL8bGjRvh6upqca2goAB/+ctf8Ne//hV+fn6S6hHRgYoaZ/MktiYutBRvEbHQikhSK+Nmi/AYGAWpTEdsWk+AUYYvv/wS48aNQ2FhIVxdXS06Op1Ohzt37qjoXcV45513UK9ePaxateqp18PDw/Hbb7/hb3/7m6R6EhISLM5FdqC2MjVYhLioCfGWExH3odZ4JKYcBK34yzCqEhAQQNOnT6f79++r7UqVadmyJZ04caLc66dOnaKWLVsK9Eh+cnJyyMnJSZKNCxcu0OjRo6mgoMDq2t27d2nMmDHmvbCqyuTJk2nOnDnlXp87dy5NmTJFUh1aiLeIWIjkyc1H4+PjKTExkfbv30937tyRbFtrbSUC2x8QwDAV4Ndff8W0adPg6OiotitVJi8v75lTvuvXry9pBduLFy9izJgx+O2336yuFRQUYOzYsbh06VKV7f8RcqXiV69eDR8fH6vMCPB4AL2Pjw9Wr14tqY60tDSMHDmy3OujRo3CN998I6kOLcRbRCxEPrcTJkywON58803069dPlgyPiLbSGixgFESv16NWrVrlHow4+vbti1OnTqnthiTq1q2LnJyccq9nZ2c/tfOrKCI7UDc3N7i7u5sPNzc3uLi4IC4ujsXFv9FCvEXEQisiSURbaQ0exKsgIgYqMhVj4MCBmDNnDn788Ue0a9fOap0RW3h3/eqrr+Ljjz9Gr169nno9JiYGPXr0qLL9tLS0Zw52HDVqFMaOHVtl+0+i5EBFkeKiWbNmT70uVVwA2oi3iFiIuI+KiiQp45FEtJXmUPsdVk3ks88+o8DAQLXdqFHodLpyD71er7Z7FeLMmTNkb29Pw4cPp+PHj9Pdu3fp7t27lJGRQcOGDSN7e3s6ffp0le0bDAbKzc0t93pubi45ODhU2b4ovL29KTU1tdzrX3/9NXl7e0uqY+TIkRQUFFTu9cDAQBoxYoSkOrQQbxGxEHEfIsYjiWgrrcECRgXkGKjI1Ey+/PJL8vT0JL1eb3F4enrS7t27JdkW0YGKGKioBXFhwtbjLSIWWhFJItpKa7CAEcyDBw9o+vTp1X72AFN9efDgAe3YsYNWrVpFK1eupJ07d8oyu0pEBypi9o4WxMWT2HK8RcRCKyJJ1HOrJXgdGAXhNQPUJyYmpkKfmzZtmsKeiKddu3bYt28ffHx8KvT5s2fPomvXrhg0aBDmzp2LVq1aAQB++uknrFq1CikpKTh69ChefPHFKvvUqlUrbNmyBZ06dXrq9dOnT2Ps2LGS9xDau3cvQkNDcfv2bYtyDw8PfPrpp7L97RUVFeGrr75CdnY2iAgtW7bEG2+8ocpst+oYb0D5WIi4j1GjRqG0tNRqXKOJIUOGwM7ODl988UWV6wDEPbdagQWMgmhlgShbpnnz5n/4GZ1Op+j0YLVwcXFBZmZmpRZTU7oDdXBwwE8//VTu4NcrV67gueeew4MHDyTVA9i2uKgK1THeJpSOhRZEkonq9NxWd1jAMIxGqcoXGqBsB9qgQQMkJSWVO7MmNTUV48aNw7Vr1yTXVVGqq7gQVUd1+sKUEgtbF0mVRcRzW93hadQKcOvWLdy/f9/iV+YPP/yANWvW4P79+wgKCpJtOiojL9wpPM6SDB069A8/V5W2UnpqcFXIzc1FaWmp0DqrE0rGu7JIiYXS9zFo0CBcuXKl2oi9mv7cAixgFGHq1Klo1KgR1q5dCwC4ceMGevTogUaNGsHf3x9vvfUWjEYj3nzzTZU9ZX4PdwoVpyptNX/+fHTt2hUjRox4air+wIEDOHr0qBLuMhLRyt9GdRZJTOVgAaMAGRkZiI+PN58nJibC3d0d586dQ+3atbFmzRp88sknLGCYGkeHDh2QnJyM0NBQqwGRHh4e2L59uyzjCBhGTbQi9qo7LGAU4Nq1a/D19TWff/PNNxg2bBhq137c3IGBgYiKilLJO4ZRl+qWimcYxjZhAaMArq6uuHv3rnkMzIkTJzBp0iTzdZ1Oh4cPH6rlHlND8PT0tNoyobrAqXj5qc7xZhgl4M0cFaBLly6IiYnBo0ePkJycjHv37lkMWrxw4QJ3yIzi3Lx50+bT2FpJxYsQF1qIN8NUBs7AKMCyZcvQu3dvbNmyBWVlZfjggw8s1n3ZunUrXnvtNRU9ZBjGBIuL6gNnkSoOtxULGEVo3749srKykJ6ejgYNGqBz584W10ePHo02bdqo5B3zLLhTqDhaaSsWFxVDK0KPn1vtwAJGIerXr48hQ4Y89drAgQMFe8NUFO4UKg63Vc1CK/FmkaQdWMAoTGpqKlJTU3Hjxg08evTI4lpcXJxKXjEMwzBKoRWxV91hAaMgkZGRWLp0KTp27IiGDRtabOzIMAzDMEzVYQGjIBs2bEB8fDwvWMfISmJiIoKDg2Fvb29RXlJSgq1bt2L8+PEAgI0bN8Lb21sNF2WDU/E1K94MUxl4GrWClJSU4JVXXlHbDUZjTJw4EQUFBVbl9+7dw8SJE83nY8eOhZOTk0jXZKe6p+ITExOfuqZTSUkJEhMTzedSxEVNijfDVAYWMAry9ttvIykpSW03GI1BRE99HXn16lXUrVtXBY+qJ1oRF1qIt4hYaAVuq4qjIyJS2wktMWvWLPO/Hz16hISEBLRv3x7t27e3SoV/+OGHot2rsVQ0DZ+UlIQhQ4ZUy1+yHTp0gE6nQ2ZmJtq2bWvemgIAjEYjLl++jH79+mH79u2S6qlObeXi4oLMzEz4+flV+v+tVasW8vPz4eXlZVF++/ZteHl5wWg0SvZPr9fj+vXr8PT0tCjPzMxEz549cefOnSrb1lK8RcSCn9uaBwsYmenZs2eFPqfT6fDNN98o7A1jQgudQmRkpPm/YWFhcHZ2Nl+zs7ODr68vhg8fDjs7O0n1VKe2kvJFYOviQkvxVjIWJrQikkS0lVbgQbwyc+jQIbVdYJ6CFtLwS5YsAQD4+voiODgYBoNBkXpsva1M4kKn06F3797ligspBAUFAQDOnTuHvn37lisupKCFeIuIhQkRz+3EiRPRr18/K5FkemVoEjBjx46ttG2RbaUVWMAoSEFBAYxGI9zd3S3K79y5g9q1a8PV1VUlz2oOWuwUJkyYoIhdrbSVlsQFYNvxFhELrYgkEW2lNVjAKMjo0aMxePBgvPvuuxbl27dvx549e7Bv3z6VPKs5aLFTMBqN+Oijj7B9+3bk5eWhpKTE4npVU8wi20rJqcFaEBdPYsvxFhELrYgkkc+tVuAxMAri7u6O9PR0PPfccxblP/30E7p164bbt2+r5FnNIyEhQTOdwuLFi/Hpp58iLCwMCxcuxIIFC5Cbm4tdu3Zh8eLFmDZtmiT7ItqqOo2zkYJS4uJJtBBvESh5H6LGIzGVhBjFcHR0pPPnz1uVnz9/nhwcHFTwiNECfn5+tHfvXiIicnZ2puzsbCIiWr9+PY0ZM0ZN1yqMTqejGzduWJWfO3eO3NzcZKmjrKyMVq9eTZ06dSJvb29yc3OzOORg0aJF1LBhQ1qzZg0ZDAZatmwZTZo0iTw8PGj9+vWy1KGFeIuIhQji4+OpqKhI0Tq00lYiYAGjIK+//jq9//77VuXvvvsude/eXQWPai5a6hQcHR3pypUrRETUoEEDOn36NBER5eTkkKurq2T7SrbVCy+8QB06dCC9Xk/t2rWjDh06mI/27duTi4sLjRw5UvI9EGlHXNhyvE2IiIVW/sZFtJVWYAGjIEeOHCGDwUA9evSgiIgIioiIoB49epDBYKBvv/1WbfdqFFrqFFq2bEkZGRlERNStWzeKiooiIqKtW7eSp6enZPtKtpXp70Cn09Hs2bPN5xEREbRixQpKSkqihw8fSr4HIm2ICyLbjrcJEbHQikjSQsZNFCxgFObs2bM0ZswYatOmDb300ks0ceJEunDhgtpu1Ti01CmEh4fT8uXLiejxl1jt2rWpRYsWZGdnR+Hh4ZLti2grEal4LYgLIm3EW0QstCKSRLSVVmABw9QItNwpHDt2jNauXUt79uyRxZ5W2koL4uJp2GK8RcRCKyJJRFtpBd4LSWFycnKwcOFCjB07Fjdu3AAA7N+/Hz/88IPKntUsmjRpgvz8fACAv78/Dh48CAA4efKk1VTe6k5UVBTi4uLM5126dMGsWbNw8+ZNrFy5UrJ9EW1lNBqxZs0avPzyy2jQoAHc3d0tDjkYOnQoUlNTAQBTp07FokWLEBAQgPHjxyM0NFSWOqKjo/HBBx8AAIKDg/Hdd9/hL3/5C5KTkxEdHS1LHVqIt4hYiLiPa9euoV27dgAAZ2dn8z5YgwYNQkpKiix1iGgrzaC2gtIyhw8fJgcHB+rTpw/Z2dlRTk4OERFFRUXR8OHDVfauZqHGL2WlaNasGaWnp1uVZ2RkkK+vr2T7ItpKjTFJcmcuiIhWrFhBsbGxVuWxsbEUHR0tSx1aiPfvUSIWIu5DjeyIEm2lFVjAKEiXLl1o7dq1RPQ43WgSMMePH6fGjRur6VqNx5Y7BXt7e7p06ZJVeU5ODtnb28tenxJtJSIVrwVxQaSNeIuIxe+xVZGkRlvZKixgFMTJycnc8TwpYC5fvqxIx8PUDFq0aEGbN2+2Kk9MTKTmzZtLti+iAxUxXkEr4kIL8RYRC62IJBFtpRV4DIyC1KtXz/xO9knOnj2Lxo0bq+BRzeX34whMxMXFyTKOQCSTJ0/GjBkzsGnTJly5cgVXrlxBXFwcZs6cicmTJ0u2v3HjRrRu3dqqvG3bttiwYYNk+4C48QoNGza0Kvf09Hzq32VV8PHxQXp6ulV5eno6GjVqJEsdWoi3iFiIuA+lxyMBYtpKM6itoLRIWloalZSUUFhYGHXv3p3y8/PJxcWFLl68SEeOHCE/Pz+KiIhQ280ahZZ+1Tx69Ijmzp1LBoOB9Ho96fV6cnR0pMjISFnsi8gqiEjFK525ICJauXIleXh4UFxcHOXm5lJubi7FxsaSh4cHrVixQpY6tBBvEbEQcR8i+hERbaUVWMAogF6vp+vXr9PDhw/p7bffptq1a5NOp6M6deqQXq+nkJAQKisrU9vNGoXocQQiuHfvHp04cYK+//57Ki4uls2uGh2oEql4LYiLJ7HleIuIhVZEkoi20gosYBRAp9PR9evXzedXrlyhlJQU2rZtGy9ipxL8q6biiOhARYxX0IK4EIFWhJ5WRJLI59bWYQGjAOVtVMeoB/+qqTgiOlCRr/RsWVyIQCtCTysiyQQ/t3+MjohI7XE4WkOv16N///5/OBhxx44dgjxiiAjz5s1DTEwMSkpKAAAGgwHh4eFYvHixyt5VTwoLC5GVlQUHBwcEBATIuuCfwWBAVlYWmjdvblF+6dIltGnTBsXFxbLVxVQMJeMtEiXvg/uR6gULGAXQ6/UYNWoUHBwcnvm5TZs2CfKIMaGVTtrWCQgIwJIlSxASEmJRvnnzZixZsgSXLl1SyTOG+WO4H6ke1FbbAa0SExMDLy8vtd1gfoezszM6deqkths1HtPU4NLSUvTq1QsAkJqairlz5yIsLExl7xjm2XA/Uj1gAaMAOp1ObRcYplozZ84c3L59G++++65VKn7+/Pkqe8cwjC3Ar5AUQK/X49q1a5yBYZg/gFPxDMNUFV6JVwEOHTpUqR1127Vrh19++UVBjximemJKxT///PMsXhiGqRScgakGuLi4IDMzE35+fmq7wjAMwzA2AWdgGIZhGIaxOVjAMAzDMAxjc7CAYRiGYRjG5mABwzAMwzCMzcEChmEYhmEYm4MFTDXA09MTderUUdsNhmEYhrEZWMBUA27evInS0lK13WAYhmEYm4EFDMMwDMMwNgcLGIZhGIZhbA4WMAzDMAzD2BwsYBiGYRiGsTlYwDAMwzAMY3OwgFGQxMREPHz40Kq8pKQEiYmJ5vONGzfC29tbpGsMwzAMY9PwbtQKUqtWLeTn58PLy8ui/Pbt2/Dy8oLRaFTJM4ZhGIaxbTgDoyBEBJ1OZ1V+9epV1K1bVwWPGIZhGEYb1FbbAS3SoUMH6HQ66HQ69O7dG7Vr/6eZjUYjLl++jH79+qnoIcMwDMPYNixgFCAoKAgAcO7cOfTt2xfOzs7ma3Z2dvD19cXw4cNV8o5hGIZhbB8eA6MgCQkJCA4OhsFgUNsVhmEYhtEULGAYhmEYhrE5+BWSghiNRnz00UfYvn078vLyUFJSYnH9zp07KnnGMAzDMLYNz0JSkMjISHz44YcIDg5GQUEBZs2ahWHDhkGv1yMiIkJt9xiGYRjGZuFXSAri7++PmJgYDBw4EC4uLjh37py5LCMjA0lJSWq7yDAMwzA2CWdgFOTatWto164dAMDZ2RkFBQUAgEGDBiElJUVN1xiGYRjGpmEBoyBNmjRBfn4+gMfZmIMHDwIATp48CXt7ezVdYxiGYRibhgWMggwdOhSpqakAgKlTp2LRokUICAjA+PHjERoaqrJ3DMMwDGO78BgYgWRkZODo0aMICAjA4MGD1XaHYRiGYWwWFjAMwzAMw9gc/ApJQaKiohAXF2dVHhcXh5UrV6rgEcMwDMNoAxYwCrJx40a0bt3aqrxt27bYsGGDCh4xDMMwjDZgAaMg165dQ8OGDa3KPT09zbOTGIZhGIapPCxgFMTHxwfp6elW5enp6WjUqJEKHjEMwzCMNuC9kBRk8uTJmDFjBkpLS9GrVy8AQGpqKubOnYuwsDCVvWMYhmEY24VnISkIEWHevHmIiYkxb+RoMBgQHh6OxYsXq+wdwzAMw9guLGAEUFhYiKysLDg4OCAgIIBX4WUYhmEYibCAYRiGYRjG5uBBvAzDMAzD2BwsYBiGYRiGsTlYwDAMwzAMY3OwgGEYhmEYxuZgAcMwDMMwjM3BAoZhGIZhGJuDBQzDMAzDMDYHCxiGYRiGYWyO/wdO1arbN9edpQAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"odds_changes = (np.exp(model.coef_) - 1) * 100\n",
"coef = pd.DataFrame(odds_changes, columns=column_names)\n",
"coef.T.plot(kind=\"bar\", legend=False)\n",
"plt.grid()\n",
"plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": 263,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 184.33978368, -73.24588216, 10.11408019, -69.01164118,\n",
" -42.3604937 , 1867.04450222, -73.24588216, -57.30827598,\n",
" -67.89164809, -27.90134379, 87.71595551, -47.99574828,\n",
" -49.09364831, -69.35050994, 10.37215112, 190.19346862,\n",
" -73.42643779, 875.62186833, -54.79865072, -77.0485994 ]])"
]
},
"execution_count": 263,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"odds_changes"
]
},
{
"cell_type": "code",
"execution_count": 264,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(23.61410818827673, 27.120965039260753)"
]
},
"execution_count": 264,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X[\"Months\"].std(), X[\"MonthlyCharges\"].std()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Some odd percentage changes are off-the-charts ! 1867% increase with Optic Fiber and 875% if the customer is in the region SEA-1 ! Given that the performance of the model is poor here and the coefficient values are very large it is very likely the model has learned noise: regularization is needed."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3.2 With L2 / L1 regularization\n",
"We can now try to improve the model by adding regularization. We can use the `LogisticRegressionCV` class which will automatically find the best regularization parameter for us:"
]
},
{
"cell_type": "code",
"execution_count": 265,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Training accuracy: 0.7857\n",
"Test accuracy: 0.7167\n"
]
}
],
"source": [
"from sklearn.linear_model import LogisticRegressionCV\n",
"from sklearn.metrics import accuracy_score\n",
"\n",
"# we can fit the logistic regression model with no regularization:\n",
"model = LogisticRegressionCV(Cs=np.logspace(-3, 3, 100), penalty=\"l2\")\n",
"model.fit(X_train_processed, y_train.values)\n",
"\n",
"y_train_pred = model.predict(X_train_processed)\n",
"y_test_pred = model.predict(X_test_processed)\n",
"\n",
"# Evaluate the model accuracy\n",
"print(f\"Training accuracy: {accuracy_score(y_train_pred, y_train):.4f}\")\n",
"print(f\"Test accuracy: {accuracy_score(y_test_pred, y_test):.4f}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The test accuracy is slightly improved. The coefficients look very similar: "
]
},
{
"cell_type": "code",
"execution_count": 266,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAKUCAYAAADM2djyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADF40lEQVR4nOzdd1gU1/c/8PcuwgoIIgoiiCJ2rKjR2BuKJR81dsXYNWqwYcMYFdTYosaW2BtRLDEaNVHsWNDYwYYFG/aGgoBSz+8Pfrtf1wWEnSID5/U8+ygzs/fMzF1mD3fu3KsiIgJjjDHGmEKov/QOMMYYY4xlBycvjDHGGFMUTl4YY4wxpiicvDDGGGNMUTh5YYwxxpiicPLCGGOMMUXh5IUxxhhjisLJC2OMMcYUJd+X3gGxpaam4smTJ7CysoJKpfrSu8MYY4yxLCAivHv3Do6OjlCrM29byXXJy5MnT+Ds7Pyld4MxxhhjRnj48CGKFy+e6Ta5LnmxsrICkHbw1tbWWXpPUlISDhw4gJYtW8LU1FSS/ZI6Rm44Bo6Rc8rnGDkrRm44Bo6Rc8rPqTFiYmLg7Oys+x7PTK5LXrS3iqytrbOVvFhYWMDa2lrSSpQyRm44Bo6Rc8rnGDkrRm44Bo6Rc8rP6TGy0uWDO+wyxhhjTFE4eWGMMcaYonDywhhjjDFF4eSFMcYYY4rCyQtjjDHGFIWTF8YYY4wpCicvjDHGGFMUTl4YY4wxpiicvDDGGGNMUTh5YYwxxpiicPLCGGOMMUXh5IUxxhhjisLJC2OMMcYUhZMXxhhjjClKvi+9A4xJycX3X4NlGhPC3NpAZb/9SEjRn3r9/uy2cu0aY4wxI8nS8vLbb7/BxcUF+fPnR506dXD27NkMt121ahUaNmyIQoUKoVChQvDw8Mh0e8YYY4zlLZInL1u3boWPjw+mTp2Kixcvolq1avD09MSLFy/S3T44OBg9evTA0aNHcfr0aTg7O6Nly5Z4/Pix1LvKGGOMMQWQPHlZsGABBg0ahH79+sHNzQ3Lly+HhYUF1q5dm+72mzZtwrBhw1C9enVUqFABq1evRmpqKg4fPiz1rjLGGGNMASTt85KYmIgLFy5g4sSJumVqtRoeHh44ffp0lsqIj49HUlISbG1t012fkJCAhIQE3c8xMTEAgKSkJCQlJWUphna7rG5vDKlj5IZjkCKGxoQMl6lJ79/04gvF9c0xlFQ+x8hZMXLDMRgTIzv7oiIiwyu4SJ48eQInJyecOnUKdevW1S0fP348jh07hjNnzny2jGHDhmH//v24du0a8ufPb7Dez88P/v7+BssDAwNhYWEh7AAYY4wxJov4+Hj07NkT0dHRsLa2znTbHP200ezZs7FlyxYEBwenm7gAwMSJE+Hj46P7OSYmRtdP5nMHr5WUlISDBw+iRYsWMDU1FWXf5Y6RG45BihiV/fYbLNOoCdNrpWLyeTUSUvWfNrrq5yk4JsD1zTGUVT7HyFkx8up1UHvnJCskTV6KFCkCExMTPH/+XG/58+fP4eDgkOl7582bh9mzZ+PQoUOoWrVqhttpNBpoNBqD5aamptmudGPek11Sx8gNxyBmjE8fhdZbl6oyWC/2cXF9cwwllc8xclaMvHYdzE5cSTvsmpmZoWbNmnqdbbWdbz++jfSpuXPnYvr06QgKCkKtWrWk3EXGGGOMKYzkt418fHzQp08f1KpVC7Vr18bChQsRFxeHfv36AQB69+4NJycnzJo1CwAwZ84cTJkyBYGBgXBxccGzZ88AAAUKFECBAgWk3l3GGGOM5XCSJy/dunXDy5cvMWXKFDx79gzVq1dHUFAQihYtCgCIjIyEWv1/DUDLli1DYmIiOnfurFfO1KlT4efnJ/XuMsYYYyyHk6XDrre3N7y9vdNdFxwcrPfz/fv3pd8hxhhjjCkWT8zIGGOMMUXh5IUxxhhjisLJC2OMMcYUhZMXxhhjjCkKJy+MMcYYUxROXhhjjDGmKJy8MMYYY0xROHlhjDHGmKJw8sIYY4wxReHkhTHGGGOKwskLY4wxxhSFkxfGGGOMKQonL4wxxhhTFE5eGGOMMaYonLwwxhhjTFE4eWGMMcaYonDywhhjjDFF4eSFMcYYY4rCyQtjjDHGFIWTF8YYY4wpCicvjDHGGFMUTl4YY4wxpiicvDDGGGNMUTh5YYwxxpiicPLCGGOMMUXh5IUxxhhjisLJC2OMMcYUhZMXxhhjjCkKJy+MMcYYUxROXhhjjDGmKJy8MMYYY0xROHlhjDHGmKLIkrz89ttvcHFxQf78+VGnTh2cPXs2w22vXbuGTp06wcXFBSqVCgsXLpRjFxljjDGmEJInL1u3boWPjw+mTp2Kixcvolq1avD09MSLFy/S3T4+Ph6urq6YPXs2HBwcpN49xhhjjClMPqkDLFiwAIMGDUK/fv0AAMuXL8e///6LtWvXwtfX12D7r776Cl999RUApLueMcYYyy1cfP81WKYxIcytDVT224+EFJXB+vuz28qxazmapMlLYmIiLly4gIkTJ+qWqdVqeHh44PTp06LESEhIQEJCgu7nmJgYAEBSUhKSkpKyVIZ2u6xubwypY+SGY5AihsaEDJepSe/f9OILxfXNMZRUPsf4cjGye40yJq5SroPZiasiovTPjgiePHkCJycnnDp1CnXr1tUtHz9+PI4dO4YzZ85k+n4XFxeMGjUKo0aNynAbPz8/+Pv7GywPDAyEhYWF0fvOGGOMMfnEx8ejZ8+eiI6OhrW1dabbSn7bSGoTJ06Ej4+P7ueYmBg4OzujZcuWnz14raSkJBw8eBAtWrSAqampJPspdYzccAxSxKjst99gmUZNmF4rFZPPq5GQqt8ke9XPU3BMgOubYyirfI7x5WJk9xoFZP86pZTroPbOSVZImrwUKVIEJiYmeP78ud7y58+fi9YZV6PRQKPRGCw3NTXN9ofKmPdkl9QxcsMxiBkjvfvFunWpKoP1Yh8X1zfHUFL5HEP+GNm9RmnjShnjS10HsxNX0qeNzMzMULNmTRw+fFi3LDU1FYcPH9a7jcQYY4wxllWS3zby8fFBnz59UKtWLdSuXRsLFy5EXFyc7umj3r17w8nJCbNmzQKQ1sn3+vXruv8/fvwYoaGhKFCgAMqUKSP17jLGGGMsh5M8eenWrRtevnyJKVOm4NmzZ6hevTqCgoJQtGhRAEBkZCTU6v9rAHry5Anc3d11P8+bNw/z5s1D48aNERwcLPXuMsYYYyyHk6XDrre3N7y9vdNd92lC4uLiAgkfgGKMMcaYwvHcRowxxhhTFE5eGGOMMaYonLwwxhhjTFE4eWGMMcaYonDywhhjjDFF4eSFMcYYY4rCyQtjjDHGFIWTF8YYY4wpCicvjDHGGFMUTl4YY4wxpiicvDDGGGNMUWSZ24gxxhgTm4vvvwbLNCaEubWByn77kZCi0lt3f3ZbuXaNSYxbXhhjjDGmKJy8MMYYY0xROHlhjDHGmKJw8sIYY4wxReHkhTHGGGOKwskLY4wxxhSFkxfGGGOMKQonL4wxxhhTFE5eGGOMMaYonLwwxhhjTFE4eWGMMcaYonDywhhjjDFF4YkZGWO5Bk/Ux1jewC0vjDHGGFMUbnlhLIfLbmsCwC0KjLHcjVteGGOMMaYonLwwxhhjTFE4eWGMMcaYonDywhhjjDFF4eSFMcYYY4oiy9NGv/32G3755Rc8e/YM1apVw5IlS1C7du0Mt//zzz8xefJk3L9/H2XLlsWcOXPQpk0bOXaVMcaYCHjMHSYlyZOXrVu3wsfHB8uXL0edOnWwcOFCeHp64ubNm7C3tzfY/tSpU+jRowdmzZqFb775BoGBgejQoQMuXryIypUrC94f/oVijDHGlE3y20YLFizAoEGD0K9fP7i5uWH58uWwsLDA2rVr091+0aJFaNWqFcaNG4eKFSti+vTpqFGjBpYuXSr1rjLGGGNMASRNXhITE3HhwgV4eHj8X0C1Gh4eHjh9+nS67zl9+rTe9gDg6emZ4faMMcYYy1skvW306tUrpKSkoGjRonrLixYtihs3bqT7nmfPnqW7/bNnz9LdPiEhAQkJCbqfY2JiAABJSUlISkoy2F5jQobL1KT378fSK8MY2nLEKk/u8pUaIzfUd3aPQay4XN9Zx7/fhuSoi9xQ33L8fivlPGUnroqI0j87Injy5AmcnJxw6tQp1K1bV7d8/PjxOHbsGM6cOWPwHjMzM2zYsAE9evTQLfv999/h7++P58+fG2zv5+cHf39/g+WBgYGwsLAQ6UgYY4wxJqX4+Hj07NkT0dHRsLa2znRbSVteihQpAhMTE4Ok4/nz53BwcEj3PQ4ODtnafuLEifDx8dH9HBMTA2dnZ7Rs2fKzB6+VlJSEgwcPokWLFjA1Nc3SezJS2W9/uss1asL0WqmYfF6NhFT9TsFX/TwFx8isfDliZLd8uWKkR2n1nR4xjwHg+s4q/v0WRuzPrdQxcsvvtxwxxPhMae+cZIWkyYuZmRlq1qyJw4cPo0OHDgCA1NRUHD58GN7e3um+p27dujh8+DBGjRqlW3bw4EG9lpuPaTQaaDQag+WmpqbZrhBj3vOp9CbJ01ufqjLYJrsxM4uRXvlyxDDmvMkRIzNKqe/MiHEMANd3VvHvtzjE+txKHSO3/H7LEUOMz1R29kPyR6V9fHzQp08f1KpVC7Vr18bChQsRFxeHfv36AQB69+4NJycnzJo1CwAwcuRING7cGPPnz0fbtm2xZcsWnD9/HitXrpR6VxljjDGmAJInL926dcPLly8xZcoUPHv2DNWrV0dQUJCuU25kZCTU6v976KlevXoIDAzETz/9hB9//BFly5bF33//LcoYL4wxltOlN7ZUUlIS9u7di6t+npL/Jc6YEsgywq63t3eGt4mCg4MNlnXp0gVdunSReK8YY4wxpkQ8txFjjDHGFIWTF8YYY4wpiiy3jRhjLDfIaK4z7pPCmLy45YUxxhhjisItL4wxWfBTNIwxsXDLC2OMMcYUhZMXxhhjjCkKJy+MMcYYUxROXhhjjDGmKJy8MMYYY0xROHlhjDHGmKJw8sIYY4wxReHkhTHGGGOKwskLY4wxxhSFkxfGGGOMKQonL4wxxhhTFE5eGGOMMaYoPDEjY4wnTWSMKQq3vDDGGGNMUbjlhTHG8hhuaWNKx8mLAvGFhzHGWF7Gt40YY4wxpiicvDDGGGNMUTh5YYwxxpiicPLCGGOMMUXh5IUxxhhjisLJC2OMMcYUhZMXxhhjjCkKj/PCGGOMpSO9MbUAHlcrJ+CWF8YYY4wpCicvjDHGGFMUTl4YY4wxpiiSJS9RUVHw8vKCtbU1bGxsMGDAAMTGxmb6npUrV6JJkyawtraGSqXC27dvpdo9xhhjjCmUZMmLl5cXrl27hoMHD+Kff/7B8ePHMXjw4EzfEx8fj1atWuHHH3+UarcYY4wxpnCSPG0UHh6OoKAgnDt3DrVq1QIALFmyBG3atMG8efPg6OiY7vtGjRoFAAgODpZitxhjjDGWC0jS8nL69GnY2NjoEhcA8PDwgFqtxpkzZ6QIyRhjjLE8QpKWl2fPnsHe3l4/UL58sLW1xbNnz0SNlZCQgISEBN3PMTExANKew09KSspSGdrtsrp9ZjQmlP5yNen9m158IcQ8BiD94xD7GOSIkR6ub46htBi54Rg4Rs4pX4oYYlzPs7MvKiJK/+qbDl9fX8yZMyfTbcLDw7Fjxw5s2LABN2/e1Ftnb28Pf39/DB06NNMygoOD0bRpU7x58wY2NjaZbuvn5wd/f3+D5YGBgbCwsMj0vYwxxhjLGeLj49GzZ09ER0fD2to6022z1fIyZswY9O3bN9NtXF1d4eDggBcvXugtT05ORlRUFBwcHLIT8rMmTpwIHx8f3c8xMTFwdnZGy5YtP3vwWklJSTh48CBatGgheLTEyn77012uUROm10rF5PNqJKSq9NZd9fMUFBMQ9xiA9I9D7GOQI0Z6uL45htJi5IZj4Bg5p3wpYohxPdfeOcmKbCUvdnZ2sLOz++x2devWxdu3b3HhwgXUrFkTAHDkyBGkpqaiTp062Qn5WRqNBhqNxmC5qalptivEmPd8KiFFlfn6VJXBNmJ+OMU4BiDz4xDrGOSIkRmub46htBi54Rg4Rs4pX8wYYlzPs7MfknTYrVixIlq1aoVBgwbh7NmzCAkJgbe3N7p376570ujx48eoUKECzp49q3vfs2fPEBoaioiICADAlStXEBoaiqioKCl2kzHGGGMKJNk4L5s2bUKFChXQvHlztGnTBg0aNMDKlSt165OSknDz5k3Ex8frli1fvhzu7u4YNGgQAKBRo0Zwd3fH7t27pdpNxhhjjCmMZLNK29raIjAwMMP1Li4u+LSvsJ+fH/z8/KTaJZbDpDdjK8/Wyhhj7HMkS17yKp5CPW/h+maMMfnxxIyMMcYYUxROXhhjjDGmKJy8MMYYY0xROHlhjDHGmKJw8sIYY4wxReHkhTHGGGOKwskLY4wxxhSFkxfGGGOMKQonL4wxxhhTFE5eGGOMMaYonLwwxhhjTFE4eWGMMcaYonDywhhjjDFF4eSFMcYYY4rCyQtjjDHGFIWTF8YYY4wpCicvjDHGGFMUTl4YY4wxpiicvDDGGGNMUTh5YYwxxpiicPLCGGOMMUXh5IUxxhhjisLJC2OMMcYUhZMXxhhjjCkKJy+MMcYYUxROXhhjjDGmKJy8MMYYY0xROHlhjDHGmKJw8sIYY4wxReHkhTHGGGOKku9L7wDLme7PbmuwLCkpCXv37sVVP0+Ympp+gb1ijDHGuOWFMcYYYwojafISFRUFLy8vWFtbw8bGBgMGDEBsbGym2w8fPhzly5eHubk5SpQogREjRiA6OlrK3WSMMcaYgkiavHh5eeHatWs4ePAg/vnnHxw/fhyDBw/OcPsnT57gyZMnmDdvHq5evYr169cjKCgIAwYMkHI3GWOMMaYgkvV5CQ8PR1BQEM6dO4datWoBAJYsWYI2bdpg3rx5cHR0NHhP5cqV8ddff+l+Ll26NH7++Wf06tULycnJyJePu+gwxhhjeZ1k2cDp06dhY2OjS1wAwMPDA2q1GmfOnMG3336bpXKio6NhbW2dYeKSkJCAhIQE3c8xMTEA0jqXJiUlZSmGdrusbm8MqWPkhmPgGDmnfI6Rs2LkhmPgGDmnfCliaEzIcJma9P5NL/7nlmVERUSGpYpg5syZ2LBhA27evKm33N7eHv7+/hg6dOhny3j16hVq1qyJXr164eeff053Gz8/P/j7+xssDwwMhIWFhXE7zxhjjDFZxcfHo2fPnrpGi8xku+XF19cXc+bMyXSb8PDw7BZrICYmBm3btoWbmxv8/Pwy3G7ixInw8fHRe5+zszNatmz52YPXSkpKwsGDB9GiRQvJHgGWOkZuOAaOkXPK5xg5K0ZuOAaOkXPKlyJGZb/9Bss0asL0WqmYfF6NhFSV3rqrfp4G22vvnGRFtpOXMWPGoG/fvplu4+rqCgcHB7x48UJveXJyMqKiouDg4JDp+9+9e4dWrVrBysoKO3fuzPTEajQaaDQag+WmpqbZrhBj3pNdUsfIDcfAMXJO+RwjZ8XIDcfAMXJO+WLGSEhRZbwuVWWwPr2Y2dmPbCcvdnZ2sLOz++x2devWxdu3b3HhwgXUrFkTAHDkyBGkpqaiTp06Gb4vJiYGnp6e0Gg02L17N/Lnz5/dXWSMMcZYLibZo9IVK1ZEq1atMGjQIJw9exYhISHw9vZG9+7ddU8aPX78GBUqVMDZs2cBpCUuLVu2RFxcHNasWYOYmBg8e/YMz549Q0pKilS7yhhjjDEFkfTZ402bNsHb2xvNmzeHWq1Gp06dsHjxYt36pKQk3Lx5E/Hx8QCAixcv4syZMwCAMmXK6JV17949uLi4SLm7jDHGGFMASZMXW1tbBAYGZrjexcUFHz/s1KRJE0j08BNjjDHGcgme24gxxhhjisLJC2OMMcYUhZMXxhhjjCkKJy+MMcYYUxROXhhjjDGmKJy8MMYYY0xROHlhjDHGmKJw8sIYY4wxReHkhTHGGGOKwskLY4wxxhSFkxfGGGOMKQonL4wxxhhTFE5eGGOMMaYonLwwxhhjTFE4eWGMMcaYonDywhhjjDFF4eSFMcYYY4rCyQtjjDHGFIWTF8YYY4wpCicvjDHGGFMUTl4YY4wxpiicvDDGGGNMUTh5YYwxxpiicPLCGGOMMUXh5IUxxhhjisLJC2OMMcYUhZMXxhhjjCkKJy+MMcYYUxROXhhjjDGmKJy8MMYYY0xROHlhjDHGmKJw8sIYY4wxRZE0eYmKioKXlxesra1hY2ODAQMGIDY2NtP3fP/99yhdujTMzc1hZ2eH9u3b48aNG1LuJmOMMcYURNLkxcvLC9euXcPBgwfxzz//4Pjx4xg8eHCm76lZsybWrVuH8PBw7N+/H0SEli1bIiUlRcpdZYwxxphC5JOq4PDwcAQFBeHcuXOoVasWAGDJkiVo06YN5s2bB0dHx3Tf93Fy4+LighkzZqBatWq4f/8+SpcuLdXuMsYYY0whJEteTp8+DRsbG13iAgAeHh5Qq9U4c+YMvv3228+WERcXh3Xr1qFUqVJwdnZOd5uEhAQkJCTofo6JiQEAJCUlISkpKUv7qt0uq9sbQ+oYueEYOEbOKZ9j5KwYueEYOEbOKV+KGBoTMlymJr1/04v/uWUZURGRYakimDlzJjZs2ICbN2/qLbe3t4e/vz+GDh2a4Xt///13jB8/HnFxcShfvjz+/fffDFtd/Pz84O/vb7A8MDAQFhYWwg6CMcYYY7KIj49Hz549ER0dDWtr60y3zXbLi6+vL+bMmZPpNuHh4dktVo+XlxdatGiBp0+fYt68eejatStCQkKQP39+g20nTpwIHx8f3c8xMTFwdnZGy5YtP3vwWklJSTh48CBatGgBU1NTQfv+pWLkhmPgGDmnfI6Rs2LkhmPgGDmnfCliVPbbb7BMoyZMr5WKyefVSEhV6a276udpsL32zklWZDt5GTNmDPr27ZvpNq6urnBwcMCLFy/0licnJyMqKgoODg6Zvr9gwYIoWLAgypYti6+//hqFChXCzp070aNHD4NtNRoNNBqNwXJTU9NsV4gx78kuqWPkhmPgGDmnfI6Rs2LkhmPgGDmnfDFjJKSoMl6XqjJYn17M7OxHtpMXOzs72NnZfXa7unXr4u3bt7hw4QJq1qwJADhy5AhSU1NRp06dLMcjIhCRXr8WxhhjjOVdkj0qXbFiRbRq1QqDBg3C2bNnERISAm9vb3Tv3l33pNHjx49RoUIFnD17FgBw9+5dzJo1CxcuXEBkZCROnTqFLl26wNzcHG3atJFqVxljjDGmIJKO87Jp0yZUqFABzZs3R5s2bdCgQQOsXLlStz4pKQk3b95EfHw8ACB//vw4ceIE2rRpgzJlyqBbt26wsrLCqVOnYG9vL+WuMsYYY0whJHtUGgBsbW0RGBiY4XoXFxd8/LCTo6Mj9u7dK+UuMcYYY0zheG4jxhhjjCkKJy+MMcYYUxROXhhjjDGmKJy8MMYYY0xROHlhjDHGmKJw8sIYY4wxReHkhTHGGGOKwskLY4wxxhSFkxfGGGOMKQonL4wxxhhTFE5eGGOMMaYonLwwxhhjTFE4eWGMMcaYonDywhhjjDFF4eSFMcYYY4rCyQtjjDHGFIWTF8YYY4wpCicvjDHGGFMUTl4YY4wxpiicvDDGGGNMUTh5YYwxxpiicPLCGGOMMUXh5IUxxhhjisLJC2OMMcYUhZMXxhhjjCkKJy+MMcYYUxROXhhjjDGmKJy8MMYYY0xROHlhjDHGmKJw8sIYY4wxReHkhTHGGGOKwskLY4wxxhRF0uQlKioKXl5esLa2ho2NDQYMGIDY2NgsvZeI0Lp1a6hUKvz9999S7iZjjDHGFETS5MXLywvXrl3DwYMH8c8//+D48eMYPHhwlt67cOFCqFQqKXePMcYYYwqUT6qCw8PDERQUhHPnzqFWrVoAgCVLlqBNmzaYN28eHB0dM3xvaGgo5s+fj/Pnz6NYsWJS7SJjjDHGFEiy5OX06dOwsbHRJS4A4OHhAbVajTNnzuDbb79N933x8fHo2bMnfvvtNzg4OHw2TkJCAhISEnQ/x8TEAACSkpKQlJSUpX3VbpfV7Y0hdYzccAwcI+eUzzFyVozccAwcI+eUL0UMjQkZLlOT3r/pxf/csoyoiMiwVBHMnDkTGzZswM2bN/WW29vbw9/fH0OHDk33fd9//z1SUlKwevXqtB1UqbBz50506NAh3e39/Pzg7+9vsDwwMBAWFhbCDoIxxhhjstA2XkRHR8Pa2jrTbbPd8uLr64s5c+Zkuk14eHh2iwUA7N69G0eOHMGlS5ey/J6JEyfCx8dH93NMTAycnZ3RsmXLzx68VlJSEg4ePIgWLVrA1NQ02/udE2LkhmPgGDmnfI6Rs2LkhmPgGDmnfCliVPbbb7BMoyZMr5WKyefVSEjV78N61c/TYHvtnZOsyHbyMmbMGPTt2zfTbVxdXeHg4IAXL17oLU9OTkZUVFSGt4OOHDmCO3fuwMbGRm95p06d0LBhQwQHBxu8R6PRQKPRGCw3NTXNdoUY857skjpGbjgGjpFzyucYOStGbjgGjpFzyhczRkJKxg/YJKSqDNanFzM7+5Ht5MXOzg52dnaf3a5u3bp4+/YtLly4gJo1awJIS05SU1NRp06ddN/j6+uLgQMH6i2rUqUKfv31V/zvf//L7q4yxhhjLBeSrMNuxYoV0apVKwwaNAjLly9HUlISvL290b17d92TRo8fP0bz5s0REBCA2rVrw8HBId1WmRIlSqBUqVJS7SpjjDHGFETScV42bdqEChUqoHnz5mjTpg0aNGiAlStX6tYnJSXh5s2biI+Pl3I3GGOMMZaLSNbyAgC2trYIDAzMcL2Liws+97CTRA9DMcYYY0yheG4jxhhjjCkKJy+MMcYYUxROXhhjjDGmKJy8MMYYY0xROHlhjDHGmKJw8sIYY4wxReHkhTHGGGOKwskLY4wxxhSFkxfGGGOMKQonL4wxxhhTFE5eGGOMMaYonLwwxhhjTFE4eWGMMcaYonDywhhjjDFF4eSFMcYYY4rCyQtjjDHGFIWTF8YYY4wpCicvjDHGGFMUTl4YY4wxpiicvDDGGGNMUTh5YYwxxpiicPLCGGOMMUXh5IUxxhhjisLJC2OMMcYUhZMXxhhjjCkKJy+MMcYYUxROXhhjjDGmKJy8MMYYY0xROHlhjDHGmKJw8sIYY4wxReHkhTHGGGOKwskLY4wxxhRF0uQlKioKXl5esLa2ho2NDQYMGIDY2NhM39OkSROoVCq915AhQ6TcTcYYY4wpSD4pC/fy8sLTp09x8OBBJCUloV+/fhg8eDACAwMzfd+gQYMwbdo03c8WFhZS7iZjjDHGFESy5CU8PBxBQUE4d+4catWqBQBYsmQJ2rRpg3nz5sHR0THD91pYWMDBwUGqXWOMMcaYgkmWvJw+fRo2Nja6xAUAPDw8oFarcebMGXz77bcZvnfTpk3YuHEjHBwc8L///Q+TJ0/OsPUlISEBCQkJup9jYmIAAElJSUhKSsrSvmq3y+r2xpA6Rm44Bo6Rc8rnGDkrRm44Bo6Rc8qXIobGhAyXqUnv3/Tif25ZRlREZFiqCGbOnIkNGzbg5s2besvt7e3h7++PoUOHpvu+lStXomTJknB0dMTly5cxYcIE1K5dGzt27Eh3ez8/P/j7+xssDwwM5NtNjDHGmELEx8ejZ8+eiI6OhrW1dabbZrvlxdfXF3PmzMl0m/Dw8OwWqzN48GDd/6tUqYJixYqhefPmuHPnDkqXLm2w/cSJE+Hj46P7OSYmBs7OzmjZsuVnD14rKSkJBw8eRIsWLWBqamr0vn/JGLnhGDhGzimfY+SsGLnhGDhGzilfihiV/fYbLNOoCdNrpWLyeTUSUlV66676eRpsr71zkhXZTl7GjBmDvn37ZrqNq6srHBwc8OLFC73lycnJiIqKylZ/ljp16gAAIiIi0k1eNBoNNBqNwXJTU9NsV4gx78kuqWPkhmPgGDmnfI6Rs2LkhmPgGDmnfDFjJKSoMl6XqjJYn17M7OxHtpMXOzs72NnZfXa7unXr4u3bt7hw4QJq1qwJADhy5AhSU1N1CUlWhIaGAgCKFSuW3V1ljDHGWC4k2TgvFStWRKtWrTBo0CCcPXsWISEh8Pb2Rvfu3XVPGj1+/BgVKlTA2bNnAQB37tzB9OnTceHCBdy/fx+7d+9G79690ahRI1StWlWqXWWMMcaYgkg6SN2mTZtQoUIFNG/eHG3atEGDBg2wcuVK3fqkpCTcvHkT8fHxAAAzMzMcOnQILVu2RIUKFTBmzBh06tQJe/bskXI3GWOMMaYgkg5SZ2trm+mAdC4uLvj4YSdnZ2ccO3ZMyl1ijDHGmMLx3EaMMcYYUxROXhhjjDGmKJy8MMYYY0xROHlhjDHGmKJw8sIYY4wxReHkhTHGGGOKwskLY4wxxhSFkxfGGGOMKQonL4wxxhhTFE5eGGOMMaYonLwwxhhjTFE4eWGMMcaYonDywhhjjDFF4eSFMcYYY4rCyQtjjDHGFIWTF8YYY4wpCicvjDHGGFMUTl4YY4wxpiicvDDGGGNMUTh5YYwxxpiicPLCGGOMMUXh5IUxxhhjipLvS+8AY4wxxpTt/uy2BsuSkpKwd+9eXPXzhKmpqajxuOWFMcYYY4rCyQtjjDHGFIWTF8YYY4wpCicvjDHGGFMUTl4YY4wxpiicvDDGGGNMUTh5YYwxxpiicPLCGGOMMUXh5IUxxhhjiiJZ8hIVFQUvLy9YW1vDxsYGAwYMQGxs7Gffd/r0aTRr1gyWlpawtrZGo0aN8P79e6l2kzHGGGMKI1ny4uXlhWvXruHgwYP4559/cPz4cQwePDjT95w+fRqtWrVCy5YtcfbsWZw7dw7e3t5Qq7mBiDHGGGNpJJnbKDw8HEFBQTh37hxq1aoFAFiyZAnatGmDefPmwdHRMd33jR49GiNGjICvr69uWfny5aXYRcYYY4wplCTJy+nTp2FjY6NLXADAw8MDarUaZ86cwbfffmvwnhcvXuDMmTPw8vJCvXr1cOfOHVSoUAE///wzGjRokGGshIQEJCQk6H6OiYkBkDYhVFJSUpb2V7tdVrc3htQxcsMxcIycUz7HyFkxcsMxcIycU35OjZGdfVERERm1V5mYOXMmNmzYgJs3b+ott7e3h7+/P4YOHWrwnv/++w9169aFra0t5s2bh+rVqyMgIAC///47rl69irJly6Yby8/PD/7+/gbLAwMDYWFhIc4BMcYYY0xS8fHx6NmzJ6Kjo2FtbZ3pttlqefH19cWcOXMy3SY8PDw7ReqkpqYCAL7//nv069cPAODu7o7Dhw9j7dq1mDVrVrrvmzhxInx8fHQ/R0dHo0SJEqhbty6srKyyFDspKQlHjx5F06ZNRZ+2W64YueEYOEbOKZ9j5KwYueEYOEbOKT+nxnj37h0AICttKtlKXsaMGYO+fftmuo2rqyscHBzw4sULveXJycmIioqCg4NDuu8rVqwYAMDNzU1vecWKFREZGZlhPI1GA41Go/tZe9uoVKlSme4nY4wxxnKed+/eoWDBgpluk63kxc7ODnZ2dp/drm7dunj79i0uXLiAmjVrAgCOHDmC1NRU1KlTJ933uLi4wNHR0eBW061bt9C6dess76OjoyMePnwIKysrqFSqLL0nJiYGzs7OePjw4WebqowldYzccAwcI+eUzzFyVozccAwcI+eUn1NjEBHevXuX4UM9H5Okw27FihXRqlUrDBo0CMuXL0dSUhK8vb3RvXt33U49fvwYzZs3R0BAAGrXrg2VSoVx48Zh6tSpqFatGqpXr44NGzbgxo0b2L59e5Zjq9VqFC9e3Kj9tra2lqwS5YqRG46BY+Sc8jlGzoqRG46BY+Sc8nNijM+1uGhJkrwAwKZNm+Dt7Y3mzZtDrVajU6dOWLx4sW59UlISbt68ifj4eN2yUaNG4cOHDxg9ejSioqJQrVo1HDx4EKVLl5ZqNxljjDGmMJIlL7a2tggMDMxwvYuLS7qdcnx9ffXGeWGMMcYY+xgPXYu0Tr9Tp07V6/irtBi54Rg4Rs4pn2PkrBi54Rg4Rs4pPzfEkGScF8YYY4wxqXDLC2OMMcYUhZMXxhhjjCkKJy+MMcYYUxROXhhjjDGmKJy8SCwxMRE3b95EcnLyl96VbElOTkZAQACeP3+u6BiMMcZyH05e/r+YmBj8/fffRk8s+an4+HgMGDAAFhYWqFSpkm5+puHDh2P27NmixPhUSkoKQkND8ebNG8Fl5cuXD0OGDMGHDx9E2LMvFwMARowYoTdAotbSpUsxatQo0eMRUZYmFmOMMWacPJu8dO3aFUuXLgUAvH//HrVq1ULXrl1RtWpV/PXXX4LLnzhxIsLCwhAcHIz8+fPrlnt4eGDr1q2CywfSRiRes2YNgLTEpXHjxqhRowacnZ0RHBwsuPzatWsjNDRUcDlfOsZff/2F+vXrGyyvV69etqae+JyAgABUqVIF5ubmMDc3R9WqVfHHH3+IVv6X9ObNGwQEBEgaIy4uDsePH1d0jOTk5EwnkhXDw4cP0b9/f8XHkONcSf25vXPnDpo1ayZZ+YD0dfH27VvJypYU5VFFixal0NBQIiLatGkTlSlThuLi4uj333+n6tWrCy6/RIkSdPr0aSIiKlCgAN25c4eIiG7fvk1WVlaCyycicnJyonPnzhER0c6dO8nR0ZFu3rxJP/30E9WrV09w+Vu3biVXV1dasmQJnTp1isLCwvReYpAjhkajodu3bxssv337Nmk0GlFizJ8/nywsLGj8+PG0a9cu2rVrF40bN44sLCxowYIFosTISGhoKKnVao6RA2LkhmPgGDmnfLFjzJ49m7Zs2aL7uUuXLqRWq8nR0VH3fSjU+vXr6Z9//tH9PG7cOCpYsCDVrVuX7t+/L0oMIiLJpgfI6aKjo2FrawsACAoKQqdOnWBhYYG2bdti3Lhxgst/+fIl7O3tDZbHxcVlebbrz3n16hUcHBwAAHv37kWXLl1Qrlw59O/fH4sWLRJcfvfu3QGk3XbRUqlUICKoVCqkpKQoIkaZMmUQFBQEb29vveX79u2Dq6ur4PIBYMmSJVi2bBl69+6tW9auXTtUqlQJfn5+GD16tChxMkICb1PFxMRkuv7du3eCymdZt3v37kzX3717VxEx5CD15za9280fe/z4saDyAXnrYvny5di0aRMA4ODBgzh48CD27duHbdu2Ydy4cThw4IDgGDNnzsSyZcsAAKdPn8Zvv/2GX3/9Ff/88w9Gjx6NHTt2CI4BSDi3UU7n7OyM06dPw9bWFkFBQdiyZQuAtGbGj2/zGKtWrVr4999/MXz4cADQJSyrV69G3bp1BZcPAEWLFsX169dRrFgxBAUF6T4w8fHxMDExEVz+vXv3BJeRE2L4+PjA29sbL1++1DXxHj58GPPnz8fChQtFifH06VPUq1fPYHm9evXw9OlTQWV37Ngx0/XR0dGCE2IbG5tMy9Amk0Jo/1jIiBiJqtQxatSoken69+/fCyofADp06KBL4DMitC7kiCHHuZL6cztq1CgUK1YMZmZm6a5PTEw0umwtOepC69mzZ3B2dgYA/PPPP+jatStatmwJFxcX1KlTR5QYDx8+RJkyZQAAf//9Nzp16oTBgwejfv36aNKkiSgxgDycvIwaNQpeXl4oUKAASpQooTupx48fR5UqVQSXP3PmTLRu3RrXr19HcnIyFi1ahOvXr+PUqVM4duyY4PIBoF+/fujatSuKFSsGlUoFDw8PAMCZM2dQoUIFweWXLFlScBk5IUb//v2RkJCAn3/+GdOnTweQNjHopy0lQpQpUwbbtm3Djz/+qLd869atKFu2rKCy9+zZgxYtWqBo0aLprhfjS9/KygqTJk3K8AJ2+/ZtfP/994JiJCQkYOjQoRn+fj148AD+/v45Osb169fRvXt3lCpVKt31T58+xa1bt4wuHwCKFSuG33//He3bt093fWhoKGrWrJnjY8hxrqT+3JYsWRJz5sxB165d012vlLrQKlSoEB4+fAhnZ2cEBQVhxowZANKSPDGuIwBQoEABvH79GiVKlMCBAwfg4+MDAMifP78oCatWnk1ehg0bhtq1a+Phw4do0aIF1Oq0vsuurq66ChWiQYMGCA0NxezZs1GlShUcOHAANWrUwOnTp0VJjgDAz88PlStXxsOHD9GlSxfd5FcmJiaizsx9/fp1REZGGvyV0a5dO8XEGDp0KIYOHYqXL1/C3NwcBQoUEKVcLX9/f3Tr1g3Hjx/XdQ4OCQnB4cOHsW3bNkFlV6xYEZ06dcKAAQPSXR8aGop//vlHUAztX8mNGzdOd72NjY3gW1PVq1eHs7Mz+vTpk+76sLAwwcmL1DEqV66MOnXqYOjQoemuDw0NxapVq4wuHwBq1qyJCxcuZPhl9rm/0nNKDDnOldSfW+15yih5UUpdaHXs2BE9e/ZE2bJl8fr1a7Ru3RoAcOnSJV1riVAtWrTAwIED4e7ujlu3bqFNmzYAgGvXrsHFxUWUGEAeTl6AtFs7VatWxb1791C6dGnky5cPbdu2Fa380qVLC/7l/JzOnTsDgN7jxhlduLPr7t27+Pbbb3HlyhW9XyBtE6YYmbocMT5mZ2cnanlanTp1wpkzZ/Drr7/i77//BpCWdJw9exbu7u6Cyq5ZsyYuXryYYfKi0WhQokQJQTF69uyZ6V9FDg4OmDp1qqAYbdu2zfTJBltbW8EtYVLHqF+/Pm7evJnheisrKzRq1Mjo8gFg3LhxiIuLy3B9mTJlcPTo0RwfQ45zJfXndtq0aYiPj89wvZubm+Bb33LUhdavv/4KFxcXPHz4EHPnztX9Eff06VMMGzZMlBi//fYbfvrpJzx8+BB//fUXChcuDAC4cOECevToIUoMIA/PKh0fH4/hw4djw4YNAIBbt27B1dUVw4cPh5OTk+CWi71798LExASenp56y/fv34/U1FRdxitESkoKZs6cieXLl+P58+e6Y5g8eTJcXFwy/LLLqv/9738wMTHB6tWrUapUKZw9exavX7/GmDFjMG/ePDRs2FDwMUgVo0aNGjh8+DAKFSoEd3f3TO8ZX7x40djdl0VCQgJSUlJgYWHxpXeFMcZyhDw7zovU47D4+vqm22pARKLd0vn555+xfv16zJ07V69DWeXKlbF69WrB5Z8+fRrTpk1DkSJFoFaroVar0aBBA8yaNUvv6aCcGKN9+/a622jt27fP9JXTaTSaL5K4PHr0CKmpqbLHZYY2b96c6V/nSokhB6k/t7Nnz5Z8bBQp6+KPP/5AgwYN4OjoiAcPHgAAFi5ciF27dokW4+3btzhw4AA2btyIgIAA3UvUca9Ee+haYaQehyV//vx07949g+X37t0jCwsLweUTEZUuXZoOHTpERPrHEB4eTjY2NoLLt7Gxobt37xIRkaurKx05coSIiCIiIsjc3Fxw+XLFkJJKpSK1Wp3py8TERPS4bdq0oSdPnohe7sesrKx0nymOkbHKlStTZGSkZOUT5Y7zRJQ7zpWS6+L333+nIkWK0IwZM8jc3FwXY926ddSkSRNRYuzevZusrKxIpVJRwYIFycbGRvcqVKiQKDGI8vA4L1KPw1KwYEHcvXvXoINSREQELC0tBZcPpI0xkF4nq9TUVCQlJQkuv3LlyggLC0OpUqVQp04dXQvPypUrRRsfRY4Yrq6uOHfunO7eq9bbt29Ro0YNQeMo7Ny5M8N1p0+fxuLFiyX5K/D48eOi9txPD8lwRzk3xLh//74ov2+ZyQ3nCcgd50rJdbFkyRKsWrUKHTp00JumplatWhg7dqwoMcaMGYP+/ftj5syZkrYY59nkRepxWNq3b49Ro0Zh586dKF26NIC0xGXMmDGiPUHj5uaGEydOGDxuvH37dsGdRAHgp59+0jVdTps2Dd988w0aNmyIwoULizbFgRwx7t+/n+4tvISEBDx69EhQ2enddrp58yZ8fX2xZ88eeHl5Ydq0aYJiMMaYGO7du5fud4NGoxHtNtXjx48xYsQIyW9157nkJS4uDpaWlpKPwzJ37ly0atUKFSpUQPHixQGk3Ytt2LAh5s2bJ6hs+v8DL02ZMgV9+vTB48ePkZqaih07duDmzZsICAgQ/OgsAL3OxmXKlMGNGzcQFRWFQoUKiTZokpQxPh65cv/+/ShYsKDu55SUFBw+fDjDMSiM8eTJE0ydOhUbNmyAp6cnQkNDUblyZdHK/1jJkiVhamoqSdlaP/7442cHfROqV69esLa2VnSMhg0bwtzcXLLygbTRoJ2cnBQfQ45z9ennNikpSdTflevXr8PR0VG08tKzb98+vRhRUVGi/C6WKlUKoaGhBn/wBgUFoWLFioLLB9Ku6efPnxet5TxDot2AUghXV1c6ceIEEaX1qxg4cCB99dVXVLFiRfLy8qLLly+LFis1NZX2799Pc+fOpSVLltCxY8dEKbdu3bq6uXqOHz9OHh4eZGdnR+bm5lS/fn3av3+/KHG0bt++TUFBQRQfH09EacclNiliqFQqXZ8U7f+1LzMzMypXrhzt2bNHcJy3b9/S+PHjydzcnOrWrUvHjx8XXGZOExYWRqampl96Nz7rp59+oqSkpAzXP3jwgDw8PCSLf/36dRozZowkZQcHB9O///5LUVFRgsuKj4+nXbt2UUxMjMG66Oho2rVrF3348EFwnMzcuXOHWrRoIaiMXr16UXR0dIbrz507R5UqVRIU40vav38/denShfLnzy9KeatWrSInJyfasmULWVpa0ubNm2nGjBm6/xtLO5/brl27aPXq1VSiRAmaOnUqbd++XW/drl27RDkOIqI8l7yMGzeOTE1NaezYsZSQkPCld8coXbp0IUtLS1q6dKmkcV69ekXNmjXTJQDazl39+vUjHx8fxcRwcXGhly9filLWp+bMmUO2trbk5uZGf//9tyQxPp2sMqOXlMSYHG706NHpvvz8/CgwMFCUL0tnZ2eqXr06XblyxWDd8uXLycrKilq1aiU4zsdiY2Np9erVVLduXVKpVIK/LGfPnk0//fST7ufU1FTy9PTUJd5Fixalq1evCoqxcOFCatasWYbrmzdvLvn1RYzPVI0aNcjJyYmCgoL0licmJpKvry+ZmprS999/b3T5Li4uVKpUqUxfrq6ugo7hU/fv36cpU6ZQyZIlydramrp160bbtm0TrfyNGzdSmTJldJ8nJycnWr16taAyP/3jMKOXmJNY5slxXv777z/0798farUaf/zxhyj9Q4C0SbwGDx6M/Pnzf3ZCL6GPGv/555/w9vZG1apVsW7dOt2tKTH17t0bL168wOrVq1GxYkWEhYXB1dUV+/fvh4+PD65du6aIGFJSq9UwNzeHh4dHpvNJCZmMTK1WZzjKptiTWGYkLCwMNWrUEBSjadOm6S5/+/YtIiIiULRoURw5ckTQgHsxMTHw9vbGtm3bMHXqVEyYMAGPHj1C//79ce7cOfzyyy8YPHiw0eV/LCQkBGvWrMG2bdvw/v17jB49GgMHDhQ8NUeNGjUwYcIEdOvWDUDa73qfPn1w8OBBVKxYEb1794aFhYWgkZtr166NyZMn43//+1+66//55x9MmzYNZ8+eNTrG54jxmUpOTsa0adMwe/Zs9OvXD/Pnz8eNGzfQp08fxMbGYtWqVWjZsqXR5Wc2we39+/exYsUK3ThMQiQmJmLHjh1YvXo1QkJC4OHhgX379uHSpUuijcj+qfj4eMTGxqb74IoS5MnkBUjrrPnTTz9h6dKlaNGiBfLl0+/+Y8yXTalSpXD+/HkULlw4074UKpVKlJlCX758iR9++AEHDx7Ed999Z3AMCxYsEFS+g4MD9u/fj2rVqsHKykqXWNy9exdVq1ZFbGysoPLligGkTcT466+/Ijw8HEDa6LejRo3SzQdlrL59+2apb866deuMjqEdi+FzpJwnSowvmszExMTAy8sLVlZWCAwMFFzerl278P3338PBwQH37t1D7dq1sXr1asHn6MWLF1i/fj3Wrl2L6Oho9OjRAz179kTdunURFhYGNzc3wfteqFAhnDp1StcHoV+/fkhJSUFAQACAtD++unTpgocPHwqKERYWlmGiGBkZiWrVquHNmzdGx/gcMT9T58+fR9++fREVFYVXr17hu+++w6+//ipJX6eoqChMnz4dy5YtQ506dTBnzhx8/fXXRpc3fPhwbN68GWXLlkWvXr3QvXt3FC5cGKampqJ9puQUEBCAbt266cbZ0kpMTMSWLVtEm08uz3XY1UpISMCLFy+gUqlQsGBBgy9+Y3w8TLQcsyXb2tqiYsWK2LlzJy5duqR3DGJ0qI2Li0u3x3hUVJTBBzMnx/j9998xcuRIdO7cGSNHjgSQ9gXQpk0b/Prrr/jhhx+MLnv9+vXZ2v7Ro0dwdHTUzaWVFXJMXhkTE5Pp+nfv3kka39raGpMnT0aXLl1EKe/rr79GlSpVcPjwYVhaWuKnn34S5TyWLFkSnTt3xqJFi/TmRBNTcnKy3mf/9OnTGDVqlO5nR0dHvHr1SnCMly9fZpi8vHz5EsnJyYJiyCl//vwwNTVFdHQ0zMzM0LRpU9ETl/fv32PBggWYN28eSpYsiR07dujm7RFi2bJlmDBhAnx9fWFlZSXCnmYso9HGVSoV8ufPjzJlyqBv374ZtpJmRb9+/dCqVSuDFp13796hX79+oiUvea7PCxHRgQMHqHjx4vTVV1/R9evXJYmh7RQslatXr1KNGjXIxcVFN7Cb2Fq3bq27916gQAG6e/cupaSkUJcuXahTp06KieHk5ERLliwxWL506VJydHQUJUZWGTP4lBx9Xj432J7Y96vTc+fOHSpQoIDgcgIDA8nW1paaNWtGN27coHHjxpGZmRmNGjWK3r9/L6js8uXLk4uLC/34448UHh6uW54vXz66du2a0F0nIqJq1arRunXriCitg7FKpdIrOyQkhJycnATFqFOnDs2ePTvD9TNnzqQ6deoIilG9enVyd3fP8FW+fHnBn6nU1FSaOXMmaTQa6tu3L71584Z+++03KlCgAH377bf04sULQeUTESUnJ9OyZcvIwcGBXFxcKCAgQNSHFgIDA8nDw4MsLS2pa9eutGfPHkpOThb1M6Xl6+tLBQsWpAYNGpCPjw/5+PhQw4YNqWDBgjRy5Ehq0aIFqdVqQf33VCpVuuc9NDRU1EHq8lzyMnjwYNJoNOTv70/JycmSxTE1NSUXFxeaOHGi4M51n5o1axZpNBrq169fuk8LiOXKlStkb29PrVq1IjMzM+rcuTNVrFiRihYtShEREYqJYWlpqXs662O3bt0iS0tLUWJk1ccjIWfVp09MfZxQiNURLjg4OEsvKW3atImqVasmqIyOHTuSpaUlLV68WG95SEgIlStXjsqVK0enTp0SFOPkyZPUr18/KlCgANWoUYMWLFhA+fLlE+0PoZUrV5KlpSX179+f3NzcqF69enrrp0+fTt98842gGCtWrCBLS8t0n7bbvXs3WVpa0ooVKwTF8PPzy9JLiNq1a1OxYsVo9+7desvv3LlDDRs2pCJFitCWLVuMLn/r1q1UtmxZsrOzo4ULF0r6kMfdu3dpypQpVKJECSpSpAip1Wr6888/RY0xcOBAmjZtmsHy6dOn08CBA4mIaMqUKVSzZs1sl61NVtVqNVWpUkUvUa1atSpZWVlRly5dBB+DVp7r81K5cmUEBAToplKXyqtXr7BlyxZs3rwZp0+fRtWqVeHl5YUePXoI7lxbrFgxrFy5MsPOdmKKjo7G0qVLERYWhtjYWNSoUQM//PADihUrppgYPXv2hLu7O8aNG6e3fN68eTh//jy2bNkiSpys+LhfT1Z93OeFiFC5cmXs3bvX4DaI1LeXhI41cfny5XSXR0dH48KFC5g5cyamTp0q6DZe/fr1sX79epQtW9Zg3fv37+Hr64tly5YhMTHR6BhasbGx2Lx5M9atW4f//vsPjRs3Rs+ePdGhQwfBs5evXbsWe/bs0c2K7ODgoFs3bNgwtGjRAt9++62gGL169UJgYCAqVKiA8uXLAwBu3LiBW7duoWvXrti8ebOg8uXQvXt3/P777+l+LokICxcuxOTJk43uO6ftkN+jR49Mb0MJ7V/4MSLCgQMHsGbNGuzevRtFihRBx44dP/sQSFYULFgQFy5cMBiZPSIiAjVr1kR0dDRu3LiBr776Ktu3iv39/XX/jhkzRjdjNQCYmZnBxcUFnTp10puHT4g8l7wkJiZm6+RZW1sjNDRU0IA79+7dQ2BgIDZv3owbN26gUaNGOHLkiNHlvX792mCo+8xUqVIFe/fuhbOzs9ExlWzGjBmYN28e6tevrxs9+b///kNISAjGjBmjd1ESa8LJjBiTvEhRRnYcOHAAq1evxp49ewRNSZDZU1NFihSBj48PJkyYIKi/Vmpq6mf7oRw/fhyNGjUyOkZ6wsPDsWbNGvzxxx+IioqSfAh8oej/P6G2bds2BAYG4vbt2yAilCtXDj179kTXrl2/9C6K5vbt2+kms1nRpEmTLH0ejx49alT5nxMVFYWAgACsW7cOYWFhgssrWrQofvnlF4N+JwEBARg3bhyeP3+O69evo3Hjxnj58qVRMTZs2IBu3brpTXgshTyXvGSXWF8UKSkp2LdvHyZPnozLly9L+ljrp4w9BhcXF/Tv3x/9+vWTLPGRI0ZWR9EV6ymwzCgleXnw4AHWrl2LDRs24M2bN2jdujU6deokqENtRk9NWVtbo1ChQkaXm1VEhKCgIKxZswbbt2+XJEZSUhL27NmDjh07Gl3G5zpPawnpkFqvXj0EBASkOzeaWDLqHPqpixcvSrYPTN+MGTMwc+ZMDBo0CF999RUA4Ny5c1i9ejV+/PFHTJo0Cb/++iv27t2LgwcPCoqVmJiIFy9eGMztJmQohI/l2aeN5BISEoJNmzZh+/bt+PDhA9q3b49Zs2Z96d3KklGjRmH9+vWYNm0amjZtigEDBuDbb78V7SkguWLI8eRXVok1rYIU0htr4tGjR6KNNSHHU1PpuXfvHtauXYv169fj5cuXgh6Pz0piIfTxexsbm0w/JyTCuD7FixdH9erVMWfOHEG36TLToUMH3f+JCLNmzcKQIUNEnXLiSydI2hY3IVO+uLm54eTJk7rzMmzYMEybNg1FihQBkPZ4vouLC+Lj4wXv708//YRSpUph6dKl+OOPPwAA5cuXx6pVq9CzZ08AwJAhQzB06FCjY9y+fRv9+/fHqVOn9JaL8bn9GLe8fIaxf+X6+vpi69atePLkCVq0aAEvLy+0b99e8smq0iP0L/WLFy9i/fr12Lx5M1JSUtCzZ0/0799f1H5DcsQA/m+21i+VRIjV8nL58mVR52WSc6yJP//8E5s3b8atW7cAQHeronPnzqLFSEhIwPbt27FmzRqcPHkSKSkpmDdvHgYMGCCoxUJ76ysjYlygszq3WuPGjY2OAfzfQJdVqlTBunXrJL+tLEWLobafBZB5gjR16lTRYsbFxWHLli1Ys2YN/vvvP7i5ueHq1atGl6dWq/Hs2TPdo8WfdlV4/vw5ihUrJnh2+uTkZMycORP9+/eXZFBTrfr16yNfvnzw9fVFsWLFDH5fqlWrJk4g0br+5lLGPB1CRFSvXj367bffJBuWPjuMPYZPJSYm0sKFC0mj0ZBaraZq1arRmjVrRH1sUKoYGzZsoMqVK5NGoyGNRkNVqlShgIAAkfb6/3xujqbIyMhsP+X26SOnJiYmVKlSJYNHT4UwMTGhH3/80eDpNTEf10xJSaGuXbuSSqWi8uXLU/v27al9+/ZUrlw5UqvV1K1bN8H1fP78eRo6dCjZ2NhQrVq1aNGiRfTs2TPRjiMnPJUlphcvXlCXLl3IxsaGhg8fbjB1g5jEug59qRjap8wsLS1JrVbTmDFj9B6XN5ZKpaLnz5/rfv70GJ49eybaMAWWlpZ07949UcrKiIWFhSjn5XP4ttFnGPMXelJSEsqXL4/WrVvrmv6ULCkpCTt37sS6detw8OBBfP311xgwYAAePXqEH3/8EYcOHRI8KqqUMRYsWIDJkyfD29sb9evXBwCcPHkSQ4YMwatXrzB69GhB+w6kdaLu1q0bjhw5ApVKhdu3b8PV1RUDBgxAoUKFMH/+fAAw6q/bj5vfAaB9+/aC9/dTf/zxB9auXYtixYqhbdu2+O6779C6dWtRYyxatAiHDh3C7t278c033+it2717N/r164dFixbpDciWXXXq1MHw4cPx33//6Z6gEZPQ1o6cRuqBLpUuvRGVg4ODUbduXfTv31/wVBBya968OY4dOwYXFxfJYri5uQkeRDFLJE+PFM7YTN7a2pru3r0rwR5ln7HHcOHCBfL29qbChQuTnZ1dun9pXLlyRdCMp3LEcHFxoQ0bNhgsX79+Pbm4uBhd7se+++478vT0pIcPH+qd76CgIHJzcxMlhhykHGuiSpUqtGbNmgzXr169mqpUqSIoRsuWLcnKyop69uxJ+/bt07XkSDHgl1QyGyzw45dQcgx0+TEltrzkz5+fevXqRUFBQZSSkqJbLubnSa1W6w3qph2sU0vMlhftYHtjxoyhwMBASWZ8Pnz4MNWtW5eOHj1Kr169oujoaL2XWDh5+f+Sk5Pp0qVLBtPNnzhxwqjZbnv37k0LFiwQa/fStWHDhnT3LSEhQe/LetOmTRQbG5vt8tVqNXl6etK2bdsoMTEx3W1iY2Opb9++2S5bzhgajSbDQeo0Go3R5X6saNGiFBoaSkT6F9A7d+4IHgjv/fv3tGvXrnQHJIyOjqZdu3aJMiPzx1JTUykoKIi6dOlCGo2GnJycaPjw4YLKzJ8/Pz148CDD9ffv3xeUpGpFRkaSv78/ubi4UNGiRWnEiBGiDSInR2KhUqnIxcWFpk6dSn///XeGLyHkGOhy0aJFeq/8+fPT5MmTDZaLSezkRY4RlVUqld6gbp/eFq5SpYpoyYscMz5/OpimVKN059kOu6NGjUKVKlUwYMAApKSkoHHjxjh16hQsLCzwzz//oEmTJoLKnzFjBubPn4/mzZujZs2asLS01FsvxngiJiYmePr0qcEcEq9fv4a9vb3gXt0PHjyQ/AkROWJUrlwZPXv2xI8//qi3fMaMGdi6dSuuXLkiOIaVlRUuXryIsmXL6nVMPH/+PDw9PfH69Wujy160aBF2796Nw4cPp7vew8MDHTp0gLe3t9ExMvP69Wv88ccfgseasLW1RXBwMKpWrZru+itXrqBRo0aiTgZ48OBBrFu3Djt37oSzszM6d+6Mzp07G90RXK1Wo2TJkujTp0+ms9ELubV3/vx5rFmzBlu2bEGpUqXQv39/eHl5ifo4uRwDXWalQ7nQ4Qk+HbhtwoQJGDdunMHteiHXW+3s4X/++SfKlSuHXr16Yfz48bh8+bJu8kwhPu50nBkxOx1L6XMdzkW79SpaGqQwTk5OdO7cOSIi2rlzJzk6OtLNmzfpp59+MhiO2xguLi4ZvkqVKiW4fCL55pBQuu3bt5OJiQl5enrStGnTaNq0aeTp6Un58uWjHTt2iBJDyjmavvrqK4Phzz+2Z88e+uqrrwTF+NjLly/p3LlzdP78eXr16pVo5bZp04aGDBmS4frvv/+eWrduLVq8j0VFRdHixYupevXqgv76O3fuHA0ZMoRsbGzI3d2dlixZYtBaK5b379/TH3/8Qc2aNSMLCwvq1q0bHThwQJSyxazXLymz66zY19t3797RypUrqW7duqRSqahJkya0cuVKUeZPYtmXZ1te8ufPj4iICBQvXhyDBw+GhYUFFi5ciHv37qFatWpZHijqS9CObRAWFoZKlSrpdbJLSUnBvXv30KpVK2zbtu0L7mXOcuHCBfz6668IDw8HAFSsWBFjxozJ9K/n7Lh69SqaN2+OGjVq4MiRI2jXrh2uXbuGqKgohISEoHTp0kaXXahQIYSFhWU4uFNkZCSqVasmuMXi2rVrGDp0KEJCQvSWN27cGMuWLRPcAfbUqVNo0qQJOnTogLFjx6JChQogIoSHh2P+/PnYtWsXjh49qutULZWLFy8KfgT/w4cP2L59u25qgP/9738YMGAAWrRoIdJe6rt37x4GDBiAY8eO4eXLl4LHSgkICMjSdkJnACYiREREIDExEeXLl9e7VilZeHg4Vq9ejY0bN0o2ovKxY8cQFxeHunXritrqFhcXh2PHjiEyMtJgmgyxRhh/+/Yt1qxZo7veVqpUCf3790fBggVFKR/Iw+O8lCxZEqtWrULz5s1RqlQpLFu2DG3btsW1a9fQoEED0ZquExMTce/ePZQuXVq0X1y555BgWSPVHE1WVlYIDg5GzZo1011/4cIFNGnSJNtzkXzs2bNnqFy5Muzs7DBkyBBdYnH9+nWsWrUKr1+/xtWrVw1uUWbXzp07MXjwYERFRektL1SoEFasWIFOnToJKv9zLl++jFq1aokyt5GW2InFxx49eoT169dj/fr1iI+PR+/evTFjxgzB15LMvgxVKhXi4uKQnJws6NbzvXv30K5dO1y/fh0A4OTkhL/++ks3sqtYvmSClJycjN27dwsaUXnOnDmIjY3F9OnTAaQdT+vWrXHgwAEAgL29PQ4fPoxKlSoJ3t9Lly6hTZs2iI+PR1xcHGxtbfHq1StYWFjA3t5elBHGtbfKzc3NUbt2bQBpo/i+f/8eBw4cEG/sri/W5vOFTZ06lQoWLEgVKlSgEiVK6Do8rlmzhr7++mvB5cfFxVH//v3JxMSETExMdJ3IvL29adasWYLLT05OpvXr19OTJ08El8Vytjp16tDs2bMzXD9z5kyqU6eOoBjjx4+nGjVq0Pv37w3WxcfHU40aNcjX11dQDK24uDjasWMHzZkzh+bMmUM7d+6kuLg4Ucr+nNDQUNE6DT58+JCmT59OpUuXpmLFitGECRMoKSlJcLkJCQm0ZcsWatGiBeXPn5++/fZb2rNnT7bHBzLGkydP6PvvvydTU1Py9PQUVFanTp2oQoUKFBgYSDt27KB69epRjRo1RNrTNHfv3qXKlSvrOoU6OzvT2bNnRY2RnuDgYPr3339FuWXo7u6uN/P1tm3byNzcnE6ePEmvX7+mtm3bijYbc+PGjWnQoEGUkpKi69wcGRlJjRo1or/++kuUGA0aNKC+ffvq/S4kJSVRnz59qGHDhqLEIMrjTxv9+eeftGDBAnr48KFu2fr16wX35CciGjFiBNWsWZNOnDhBlpaWuuTl77//purVqwsunyjtKRo5HsdOSEigGzduiHJhzkxqaqqoA97Jae3atbRt2zaD5du2baP169cLKnvFihVkaWlJe/bsMVi3e/dusrS0pBUrVgiK4e7uTlu3bs1w/ebNmwUPhJcTCE1e5EgsbG1tqWTJkjRlyhS6ffu2waOmYj9ySkQUExNDkyZNogIFClCdOnVEeXS6aNGidOLECd3PT548IbVabdSTjxmROkGaPXu2ri8bUdo1ytPTU/dETdGiRenq1auCYtjY2Og9Cde3b1/67rvvdD+fPn2aihcvLiiGVsGCBenGjRu6/2vj/vfff1S+fHlRYuTPnz/dQequXbtG5ubmosQgysPJS1YfMzZWiRIl6PTp00Sk//je7du3ycrKSnD5REQ1a9akQ4cOiVJWeqRuPdKSa/RbKZUtWzbdC35wcDCVK1dOcPleXl6kUqmoYsWK1KFDB+rQoQNVqFCB1Go1de/eXXD5BQsWTPdxcq3bt29TwYIFBcX49BHZjF5SEpq8yJFYfPr4qpSPnCYmJtL8+fOpcOHCVK5cOdHG9CFKO45nz57pLbO0tBT1Dy6pEyQ5WkU+fby7fPnytGzZMt3PDx48EGUIASKiIkWK0K1bt4go7ZoVFBRERETh4eFkYWEhSgx7e3vav3+/wfKgoCCyt7cXJQZRHk5e1Gq13pDMWq9evRLlwmBubq77QH784QwNDSVra2vB5RMR7du3j6pXr0579uyhJ0+eiP6XmRytR/PnzycLCwsaP368bqCkcePGkYWFheTj5IhJo9GkO+z2vXv3RLvwbN26ldq3b09ubm5UsWJFat++faatJdmR0e+D1rNnz8jExERQjE+fAjExMaHixYuL+mRIRsmE9nXixAlBv99yJBZyTEGQmppK69evpxIlSpCjoyOtWLFC9NtSarWaIiIi9M6/lZUVhYWFiZroSZkgydEqUq1aNVq3bh0RpSUqKpVKbwyZkJAQcnJyEhRDq0WLFrRp0yYiIho4cCDVrl2bNm7cSJ6enlS7dm1RYgwfPpyKFy9OW7ZsocjISIqMjKTNmzdT8eLFaeTIkaLEIMrDyYvUjxk3bNiQFi9eTET6IyZ6e3sLvpesldGFVKy/zORoPZJ69NvExEQyMTGhK1euCC4rM87OzumOUPn333+LduHJqlmzZtGbN2+y9Z70vmg+ft26dUvUAaaIpBlxNaOkQqzfjZw4t5Ex9V25cmWysLCgCRMm0NOnTyVrQcro/It1nZI6QZKjVWTlypVkaWlJ/fv3Jzc3N4OhOqZPn07ffPONoBha586d07UQP3/+nDw9PcnKyopq1KihG2RTqISEBBoxYgSZmZnp6lqj0dCoUaNEHUwzdzy3lg3ax4xVKhWaN2+e4WPGQs2cOROtW7fG9evXkZycjEWLFuH69es4depUlmeN/ZyjR4+KUk5GXr58me7TJXFxcaLNe/L06VPUq1fPYHm9evXw9OlTweWbmpqiRIkSok3DnpEePXpgxIgRsLKyQqNGjQCkPeo4cuRIdO/eXdLYn5o5cya6du0KGxubLL+HiFCuXLlM1ythrhupfyeyO8DW7NmzMWTIkGzVRXYZU9/Xrl0DAMydOxe//PKLwXoSYXZsqesCSP9zS0S6IRCEHkfp0qVx/PhxuLq6IjIyErdu3dL9fgNpT4MVLlzY+AMAMGjQIJiYmGDPnj1o1KiRwWB0T548Qf/+/QXF0KpVq5bu//b29ggKChKl3I+ZmZlh0aJFmDVrFu7cuQMg7TxaWFiIGifPJS/aSe5CQ0Ph6emZ4WPGQjVo0AChoaGYPXs2qlSpontE7PTp06hSpYrg8gHpJ4mrVasW/v33XwwfPhzA/03Utnr1atStW1eUGGXKlMG2bdsMRr/dunUrypYtK0qMSZMm4ccff8Qff/wh6mOsH5s+fTru37+vlxCnpqaid+/emDlzpiQxM0JGjH4gxxeNHHJacmFMYpFdObW+5agLqY/jhx9+gLe3N06cOIH//vsPdevWhZubm279kSNHRBkrqn///hkmKL///rvez3IkxGKwsLAQ7bsuPXl2nJcNGzagW7duyJ8//5feFUGkHAzo5MmTaN26NXr16oX169fj+++/12s9ymjckez466+/0K1bN3h4eOgGJwsJCcHhw4exbds2fPvtt4JjuLu7IyIiAklJSShZsqTBVA0XL14UHEPr1q1bCAsLg7m5OapUqSL51Afp+Xh6AqmIcQGVYz8/x9raGqGhoZLtgxzHqJT6/hyp6wIw7jjWrl2LPXv2wMHBAVOnToWDg4Nu3bBhw9CiRQtRrlNZJeQ8PX/+HGPHjsXhw4fx4sULg8RXSEtbVluH1q5da3SMj+XZ5EUrMTERL168QGpqqt7yjEYzzaqLFy/C1NRUl3nu2rUL69atg5ubG/z8/EQZQE6OwYDu3LmD2bNn6w28NmHCBFEzaqlHv/3c3CFKmTMkq+T4MjPmAvrpqNXFixfHyZMn4eLiYlC2XKQ+V7kleZEjscgNxyFHkifkPLVu3RqRkZHw9vZGsWLFDG4FC5mTSzvvl7u7e6atgTt37jQ6xsfy3G0jrdu3b6N///44deqU3nIx7vUCwPfffw9fX19UqVIFd+/eRbdu3dCxY0f8+eefiI+Px8KFCwWVDwCjR49Gu3btsGrVKt2tiuTkZAwcOBCjRo3C8ePHBccoXbo0Vq1aJbiczNSsWRMbN26UrHypkhMfHx9Mnz4dlpaW8PHxyXTbBQsWSLIPX4oxf/PY2NjoXSw/7pug/VmM3z0mvtzyN67UxyHHbUIhTp48iRMnTqB69eqilz106FBs3rwZ9+7dQ79+/dCrVy/JbtMDeTh56du3L/Lly4d//vkn3QxUqFu3buk+IH/++ScaN26MwMBAhISEoHv37qIkL+fPn9dLXAAgX758GD9+vF7HLCFSU1MRERGRbuvUxx3XjNW7d280bdoUjRs3lvQvrrdv32L79u24c+cOxo0bB1tbW1y8eBFFixaFk5OTUWVeunRJN6fJpUuXMtxOCR1d5ZBb+tUwlpGcnuQ5OztLto+//fYbFixYgB07dmDt2rWYOHEi2rZtiwEDBqBly5aiXwfzbPISGhqKCxcuoEKFCpKUT0S6L/tDhw7hm2++AZD24Xn16pUoMaytrREZGWlwDA8fPoSVlZXg8v/77z/07NkTDx48MPjAi/UXspmZGWbNmoUBAwbAyckJjRs3RpMmTdC4cWPROuxevnwZHh4eKFiwIO7fv49BgwbB1tYWO3bsQGRkZJYnqfvUx1/GOemLuWHDhjA3N//Su2Egp3WmzS1yan2znGfhwoXw9fXFihUrDG7XikGj0aBHjx7o0aMHHjx4gPXr12PYsGFITk7GtWvX9B6QESrPJi9ubm6iJRHpqVWrFmbMmAEPDw8cO3YMy5YtA5A2WVnRokVFidGtWzcMGDAA8+bN0z1uHBISgnHjxqFHjx6Cyx8yZIjuiSMpWqeAtCeXAODx48c4fvw4jh07hvnz5+P7779HsWLF8OjRI8ExfHx80LdvX8ydO1cvqWvTpg169uwpuHwA2LhxIzp27Cj644CfykpL2N69eyXdB7nk9Cb4rBCaWOSl+mbSKFSokN61Oy4uTvfosqmpqd62n06YKoRarYZKpQIRSXIrOM8mL3PmzMH48eMxc+ZMVKlSxaAShXYaXLhwIby8vPD3339j0qRJKFOmDABg+/bt6Y5rYox58+ZBpVKhd+/eSE5OBpA2rsnQoUMxe/ZsweXfvn0b27dv1+27lAoVKoTChQujUKFCsLGxQb58+WBnZydK2efOncOKFSsMljs5OeHZs2eixBg9ejSGDBmCdu3aoVevXvD09ISJiYkoZWvJ0RKWk8jRBC8kuZA6schr9c0tSFmT3fMkRheFrEpISNDdNjp58iS++eYbLF26FK1atYJarRY1Vp5NXjw8PAAAzZs311suVqfBqlWr4sqVKwbLf/nlF9G+1KQeDKhOnTqIiIiQNHn58ccfERwcjEuXLqFixYpo3LgxfH190ahRIxQqVEiUGBqNxuBJFyCtX5JYCdLTp08RFBSEzZs3o2vXrrCwsECXLl3g5eUlWrIqR0tYVinhi0bK5EKOxCI31XdOaUHK6Z9bKc5Tnz59RNu/zAwbNgxbtmyBs7Mz+vfvj82bN6NIkSKSxcuzj0p/bpRbqQeAE9vDhw8BpPWpEcvOnTvx008/Ydy4cem2TlWtWlVwDLVaDTs7O4wePRodO3bMdJRXYw0cOBCvX7/Gtm3bYGtri8uXL8PExAQdOnRAo0aNRP/LJD4+Hjt37kRgYCAOHTqE4sWL65JLISwtLREWFiZ5S5jUnbSzSsgjoVInF9WrV0e5cuXg7++fbmIhxjhLuaW+5WpBygmf2zZt2mDNmjUoVqxYtt8r5Xl68uQJFixYgClTphjcVYiOjsaMGTMwduxYQV0a1Go1SpQooRvFPiM7duwwOsbH8mzLi9KSk/QkJyfD398fixcvRmxsLACgQIECGD58OKZOnWqQbGSXdqThjwcf0t7DFOuic+nSJRw7dgzBwcGYP38+zMzMdJ12mzRpIkoyM3/+fHTu3Bn29vZ4//49GjdujGfPnqFu3br4+eefBZf/KQsLC3h6euLNmzd48OCBbvwaoeRoCcsttyqkbrWQ45ZqbqlvOVqQ5DgOqVuPpDxPCxYsQExMTLrdIQoWLIh3795hwYIFmDNnjtExevfuLW/roGizJCnQ8ePHycvLi+rWrUuPHj0iIqKAgAC9KdZzsiFDhpC9vT0tX76cwsLCKCwsjJYvX04ODg40ZMgQweXfv38/05cUQkNDqU+fPpQvXz7RJwI8ceIE/fbbbzRnzhw6ePCgqGUTEcXFxdHGjRupdevWZGZmRqVLl6affvqJwsPDRSl/x44d5ObmRuvWraPz58/r6lz7EkO1atWoS5cudP36dXrz5g29fftW7yUnIRM3WlhY0O3bt0Xeo//TtGlT2rdvn2TlE+We+pa6LoikP47Tp09TqVKldBNKfjoprhikPE+VKlXK9HstJCSE3NzcJImdkYcPH1JKSorR78+zycv27dvJ3NycBg4cSBqNRneRXLJkCbVu3foL713WWFtb0969ew2W//vvv2Rtbf0F9ijrjh07RklJSZSamkoXLlyg+fPn0//+9z8qVKgQmZiYkLu7O40aNepL72aWdevWjSwtLcnOzo5++OEHOnXqlOgxPr1oai+cSrmAZlfr1q3pyZMnRr1X6uRCjsQit9S3HIme1MchR5In5XmysLCgBw8eZLj+wYMHZGFhIUnsjFhZWQmaVT7P3jaaMWMGli9fjt69e2PLli265fXr18eMGTMElz9t2jSMHTvWoPPs+/fv8csvv2DKlCmCY2g0mnSf1S9VqpQo0w/8+eef2Lx5M27dugUAKFeuHHr27InOnTsLLrtp06Z4+vQpypcvj9jYWFSrVg2NGzfGoEGD0LBhQ9Efjz18+LDBFASjRo3SddwWysTEBNu2bZPkKSOte/fuSVLux+S4VQFI3wQ/fPhwjBkzBs+ePZOkv5Yct1RzS31LXReA9Mchx21CKc+Tubk57t+/n+G0N/fv35e9IzMJ7G6bZzvsWlhY4Pr163BxcdHrGHj37l24ubnhw4cPgso3MTHB06dPYW9vr7f89evXsLe3F+XiNm3aNNy4cQPr1q2DRqMBkPao2oABA1C2bFmjh8VPTU1Fjx498Oeff6JcuXK6QfDCw8MRERGBLl26YPPmzYLub6rVajx79gznzp1Dw4YNJZ3P5vfff8fIkSPRuXNn3WzY//33H7Zv345ff/0VP/zwg6Dyk5KS0KpVKyxfvly0gfW+FDk6acvRPyG9xzLFTC4ePHiQ6fovMSGnMeTqlP8psRM9qY+jWbNmGD9+PFq1aiWonMxIeZ7atm0LR0fHDKd6GThwIJ48eSLrmEFC57LKsy0vDg4OiIiIMGi5OHnypCjD1Gs/cJ8KCwsTbb6HS5cu4fDhwyhevDiqVaumKz8xMRHNmzdHx44dddtmp4f3okWLcOjQIezevVs3MrDW7t270a9fPyxatAijRo0StP8qlQpt27YVVEZWzJw5E7/++iu8vb11y0aMGIH69etj5syZgpMXU1NTXL58WehuZsmdO3ewcOFCXQuSm5sbRo4cidKlS4tSvhwtCnJ04JS61UKu5CQ31LccLUhSH4ccrUdSnqexY8eiRYsWKFiwIMaNG6d7quj58+eYO3cu1q9fjwMHDkgWXwp5tuVl1qxZ2LhxI9auXYsWLVpg7969ePDgAUaPHo3Jkydj+PDhRpWrHc0wOjoa1tbWehfmlJQUxMbGYsiQIfjtt98EH0O/fv2yvO26deuyvG3VqlUxatSoDKc4X7NmDRYtWiToC1utVqN169a6FqOMiPFYXYECBRAaGmrQ5Hv79m24u7vrntQSYvTo0dBoNKIMDpiR/fv3o127dqhevTrq168PIG1E5bCwMOzZswctWrQQHEOOFgW5HgGWmtSJRW6pbzlIfRxytB5JbcWKFRg5ciSSkpJ0303R0dEwNTXFr7/+iqFDh8q6P0JbXvJs8kJEmDlzJmbNmoX4+HgAaX1Ixo4di+nTpxtd7oYNG0BE6N+/PxYuXKg33oOZmRlcXFx0ty5yKnNzc9y8eTPD+6MPHjxAhQoV8P79e6NjqNVqdO3a9bP3WbOTdGWkZ8+ecHd3x7hx4/SWz5s3D+fPn9fr82Ss4cOHIyAgAGXLlkXNmjVhaWmpt16MWaXd3d3h6elpkCD5+vriwIEDuHjxouAYcpCjCR6QNrmQI7HILfUNSJ/oSU2uJE/q8/To0SP8+eefiIiIABGhXLly6Ny5M4oXLy5K+dnByYtAiYmJiIiIQGxsLNzc3ESbOOrYsWOoX7++3ozPUnnx4gVu3rwJAChfvrxBP5vssrW1RXBwcIZNoVeuXEGjRo3w5s0bo2No+7wI3deMLF68WPf/mJgYzJs3D/Xr19fr8xISEoIxY8bgp59+EhyvadOmGa5TqVQ4cuSI4Bj58+fHlStXDPrV3Lp1C1WrVhXcT0tL6guoHP0spE4u5Egsckt9y5HoAcpPkOQ4T3FxcQZ/WH0pJiYmuH37tvHdNIx+Tol9VkREBE2aNIm6d+9Oz58/JyKivXv30tWrV0UpPzo6mnr16kX58uXTPUqZL18+8vLyEvT4Xps2bTIdJ+b7778X/Di5Wq3WnRMpuLi4ZOlVqlQpyfZBbMWLF6dt27YZLN+6dSs5OzuLEiMoKIjMzMyodu3aNHr0aBo9ejTVrl2bNBoNHThwQJQYcjwCXL16dZowYYLB8gkTJpC7u7vg8jUaDd26dctg+c2bN0mj0Qgunyj31LfUdUEkz3FERESQt7c3NW/enJo3b07Dhw+niIgIUcomkuc8WVpaUr9+/XLEWGZqtVrQo9J5Knn59ttvs/wSKjg4mMzNzcnDw4PMzMx0lTRr1izq1KmT4PKJiLp27Uply5aloKAgio6OpujoaAoKCqLy5ctTt27djC43JCSETE1NqUuXLnTmzBmKjo6mt2/f0unTp6lz585kampKJ0+eFLTvKpVK0uTlS7l9+zYFBQVRfHw8ERGlpqaKVra/vz/Z2NjQ7Nmz6fjx43T8+HGaNWsW2djY0LRp00SJIccFVI7BD6VOLuRILHJLfcuR6El9HHIkR3Kcp507d1L79u3J1NSUypYtS7NmzaLHjx+LUnZ2CRmEkiiPJS99+/bVvfr06UPW1tbk7OysS1hKlChB1tbW1LdvX8Gxvv76a5o/fz4R6VfSmTNnyMnJSXD5RGkDD6WXQR8/flzwgEM7duygIkWKkFqt1nsVLlyYtm/fLqhsorTkLikpKcvbV65cmSIjIwXHlcqrV6+oWbNmutYDbX3369ePfHx8RImRmppKCxYsICcnJ12LhZOTEy1cuFC0JEmOC6gcpE4u5Egsckt9y5HoSX0cciR5cpwnrRcvXtD8+fOpSpUqlC9fPmrbti399ddf2bomC8XJi5HGjx9PAwcOpOTkZN2y5ORkGjx4MI0dO1Zw+ZaWlnT37l0i0q+ke/fuiXZRcHZ2psuXLxssDwsLEyVBiouLox07dtCcOXNozpw5tHPnToqLixNcrjGy+0EfPXo0xcbG6v6f2UsM3333HXl6etLDhw/19jUoKEiSYbdjYmIoJiZG9HLluoBK3QQvdXIhR2LxMSXXtxyJntTHIUeSJ8d5Ss/ixYtJo9GQSqUiOzs7mjx5sizXeU5ejFSkSBG6ceOGwfIbN26Qra2t4PKdnJwoJCSEiPQraceOHeTq6iq4fCKiFStWkIeHBz19+lS37OnTp9SyZUtavny5KDGyQo5Wkex+0Js0aUJv3rzR/T+jV9OmTUXZv6JFi1JoaKjBvt65c4csLS1FiSEHOS6gcjTBy5lcSJVYyCG3tCBJfRxyJHlyfmafPXtGc+bMoYoVK5KFhQV5eXnRkSNHKCAggCpVqkQtWrQQNV56OHkxko2NDf39998Gy//++2+ysbERXP6YMWOoQYMG9PTpU7KysqLbt2/TyZMnydXVlfz8/ASXT5TWlFmgQAEyNTWl0qVLU+nSpcnU1JQKFChA7u7uei8pCf0QShXjzp07kvwVnJ4CBQro/jL7eF/PnTsnKBl2d3enqKgoIkqr70/rVew6luMCKkcT/MeUlFzkxvr+mFR1IfVxyN0qItV5+uuvv+ibb74hU1NTqlatGi1ZskT3R55WREQEmZqaih77Uzy3kZH69euHAQMG4M6dO6hduzYA4MyZM5g9e3a2Bn/LiHbkVmdnZ6SkpMDNzQ0pKSno2bOnKI/mAkCHDh1EKSe3Klu2rN4UDd26dcPixYt1o0uKqWHDhggICNCNEaRSqZCamoq5c+dm+hj157Rv3143kJ8c9a1SqTB69GiMHj0a7969A5A2HoOYwsPDsW3bNoPl2rGRxCbW/teoUQOHDx9GoUKF4O7ununIwMY+Kp0b6/tjUpUt9XFMnjwZVlZWmD9/PiZOnAgAcHR0hJ+fH0aMGCFaHC2pzlO/fv3QvXt3hISE4Kuvvkp3G0dHR0yaNEmS+B8jntvIOKmpqZg3bx4WLVqEp0+fAgCKFSuGkSNHYsyYMaJNrhcZGYmrV68iNjYW7u7uip/7Jj1CBxuSKsanY8lIuZ9Xr15F8+bNUaNGDRw5cgTt2rXDtWvXEBUVhZCQEMWMNSEHZ2dnLFiwAF26dNFbvm3bNowdOxaRkZFGlSt1cuHv749x48bBwsIC/v7+mW5r7LxiuYUcid6XImZyJPd5io+PN5gs+Et5+PAhHB0djf6uzbMtL2q1GuPHj8f48eMRExMDAJJMDliiRIkMR6pluUflypVx69YtLF26FFZWVoiNjUXHjh3xww8/oFixYl969zIl9wV00KBBGDx4MO7evYt69eoBSBuMa86cOfDx8TG6XKlbLT5OSJScnOSWFqQvlSCJ2Soix3nSfr9l9PPHxPgO/PDhA5YsWYKjR4+mO2u8ti6cnZ0FxcmzycvHpEhaUlJSsH79ehw+fDjdChRjxFW1Wp3pL6wS5tsICAhAt27dDOY4SkxMxJYtW9C7d28AafNyZPd2j0qlMjg/UkwCqFWwYEFJm1u182Z9SqVSIX/+/ChTpgz69u2b7duect+qkKoJPrckF1pKrm856kLq45AjOZLjPNnY2Hz2ukciztE0YMAAHDhwAJ07d0bt2rUlu+bm2dtGz58/x9ixY3XJxaenQWglent7Y/369Wjbtm26M+f++uuvgsoHgF27dun9nJSUhEuXLmHDhg3w9/fHgAEDBMfICiG3Y0xMTPT6pWi9fv0a9vb2gurh08kf9+zZg2bNmhkMjy1k8sdXr14hLi5Ob26Ta9euYd68eYiLi0OHDh3Qs2dPo8v/2K+//oqff/4ZrVu31vXTOnv2LIKCgjB69Gjcu3cPf/zxB5YsWYJBgwaJElNqcvSzkIJUicXHcmN9K0luuU147NixLG/buHFjwfEKFiyIvXv36qY4kEqeTV5at26NyMhIeHt7p5tctG/fXlD5RYoUQUBAANq0aSOoHGMEBgZi69atBslNdmW1VSQwMBDt27c3as4MtVqN58+fw87OTm95WFgYmjZtiqioKKP3P6tfHEImf+zRowccHR0xf/58AGnzTFWoUAGOjo4oXbo09u3bhzVr1uC7774zOoZWp06d0KJFCwwZMkRv+YoVK3DgwAH89ddfWLJkCVauXIkrV64IjqdkUicXciQWuaW+5Uj0coPccp7c3NywZcsWUeYoy0yeTV6srKxw4sQJVK9eXZLyHR0dERwcjHLlyklSfmbu3r2LqlWrIjY2VlA5UraKaJthw8LCUKlSJb0JLFNSUnDv3j20atUq3adSpPLo0SM4OjpCrVZn+T2lSpXC+vXrdX+xzJs3D8uXL8eNGzeQL18+zJs3D9u3b8d///0neP8KFCiA0NBQlClTRm95REQEqlevjtjYWNy5cwdVq1ZFXFycUTGkuoDK3T9B6uRCjsRCyfX9MTkSvdzwxS9XS9vbt29x9uzZdLszaP8gFWLfvn1YvHgxli9fLtps2+nJs31enJ2dBT+qlZkxY8Zg0aJFWLp0qaT9LD71/v17LF68GE5OToLL0t4H/dSjR49QsGBBQWVr71GHhobC09NTbzZvMzMzuLi4oFOnToJiZJebmxtCQ0Ozdfvr2bNncHFx0f185MgRdOzYUZeMtWvXDrNmzRJl/2xtbbFnzx6MHj1ab/mePXtga2sLIG3WWCG3YKZMmZLhBfSHH37AvXv3MHToUCQnJ2frAip3v5qTJ09ixowZmSYXVatWxeLFi436Iti/fz/mzJljsLx58+YYM2YMAKBNmzbw9fU17gCg7Pr+mNR1IcdxyJEcyXGe9uzZAy8vL8TGxsLa2lrvmFQqlSjJS61atfDhwwe4urrCwsLCYNZ4Ia3peoQNM6Nc+/fvp5YtW9K9e/ckKb9Dhw5UsGBBKlWqFH3zzTeiT/xIlDbQXqFChXQvGxsbMjExISsrK9q1a5fR5WoHx1Kr1VSlShW9gbGqVq1KVlZW1KVLF1GOYf369fThwwdRyhLKmIHw7O3tdSPrEpHB3E+3bt0SbYTdlStXkomJCf3vf/+j6dOn0/Tp06ldu3aUL18+Wr16NRERzZs3j7p27Wp0jI4dO9KyZcsMli9fvpw6duxIRGnDiVeuXNnoGHKwtLSk27dvGyy/ffu2rj4iIiKMngPM2dmZFixYYLB8wYIFuhFXw8LCqGjRokaVT5R76lvquiCS/jgWLFhAhQsXpl69etHixYtp8eLF1KtXLypSpAj9/PPPNHDgQNJoNLRy5Uqjj0GO81S2bFkaOXKkpMP/N2/enMqWLUuzZ8+mdevW0fr16/VeYsmzLS/dunVDfHw8SpcuLUl2aGNjg2+//VZQGZ/z6YBearUadnZ2qFOnDgoVKmR0uXK2imhbO+rUqaO3/MyZMzAxMUGtWrVEiSOVr7/+GosXL8aqVauwY8cOvHv3Ds2aNdOtv3XrluBHArUGDRoENzc3LF26VNfJuHz58jh27JjukWPtX/3GkqNFQQ5St1pMnjwZQ4cOxdGjR3V/6Z87dw579+7F8uXLAQAHDx4U1AEyt9S3HC1IUh+HHK0icpynx48fY8SIEZKO9XLq1CmcPn0a1apVkywGkIdvG0kxkqdWcnIymjZtipYtW8LBwUGyOH369JGkXG3PeRcXF3Tv3t2gw66YfvjhB4wfP94geXn8+DHmzJmDM2fOSBZbDNOnT0fz5s2xceNGJCcn48cff9RLHLds2SJKD36t+vXrS9qLX44LqBxN8FInF3IkFkDuqG85Ej2pj0OOJE+O8+Tp6Ynz589LOqBohQoV8P79e8nK18qzyYtUX/wAkC9fPgwZMgTh4eGSlC/X47lytIpcv34dNWrUMFju7u6O69evCy5falWrVkV4eDhCQkLg4OBgcK66d++OSpUqiRbvzp07WLduHe7evYuFCxfC3t4e+/btQ4kSJUSJI8cFVI5+FnIkF1InFkDuqG856kLq45AjyZPqPO3evVv3/7Zt22LcuHG4fv06qlSpYnDHoV27dkbvv9bs2bMxZswY/Pzzz+nGEG1cNdFuQClQREQETZo0ibp3707Pnz8nIqK9e/fS1atXBZfduHFj2rlzp+By0tO9e3fy8fHR/fz8+XMqVKgQVapUidq1a0empqYUEBAgOM5XX31Ff/75p8Hyv/76i2rXri24fCIiW1tbOnXqlMHykJAQUSbIzA4hE4Vt2LAh3b47CQkJtGHDBqG7RkREwcHBZG5uTh4eHmRmZqbb11mzZlGnTp1EiUFEdPLkSerevbuun1P37t11M6SLIbf0q9FeP3r06CH69YMo99S3XKQ8Djn6H0lFO1Hl515qtVrUeGq1Wu8lZgyiPDyrtNQXhq1bt5KrqystWbKETp06RWFhYXovIVxcXCg4OFj38y+//EKlS5empKQk3c916tQRFIMorQNZel/md+/epQIFCggunygtEWvcuDG9fftWt+zNmzfUuHFj0ToFZ5WQ2bHVarXuC+xjr169Eu0X9uuvv6b58+cTkf6+njlzhpycnESJIQc5OiZqy5AquZAjscgt9U0kfaInBzmSvNxwnoKDgzN9iSXPJi9SXxgyymzFyD7z589P9+/f1/3cunVrGjdunO7nmzdvkq2traAYRPK0ijx69IhcXV2pYMGC1KRJE2rSpAnZ2NhQ+fLlKTIyUpQYWrdv36agoCCKj48nIqLU1FS99ZGRkZScnGxU2SqVil68eGGwPDQ0lAoVKmRUmZ+ytLSku3fvEpH+Z/bevXuk0WhEiUEk/QVUjid1pE4u5Egsckt9y9WCpPQvfjnOkxwtxHLJs8mL1BeG+/fvZ/oSQq7Hc+VqFYmNjaUVK1bQsGHDaMyYMbRhwwZKTEwUrfxXr15R8+bNdYmjtq779eund/vNGHI+Vu7k5KT7S+/jz+yOHTvI1dVVlBhyXEDlaIKXOrmQI7HILfUtR6Inx3FInRzJcZ7kaCE+duxYpi+x5NnkRY4Lg1TatWtH/fv3p5SUFPrzzz/JzMyMoqKidOv/+ecfqlChguA4craKSOm7774jT09PevjwoV5dBwUFkZubm6Cy/fz8yM/Pj1QqFY0dO1b3s5+fH82cOZMCAwMpISFBjMOgMWPGUIMGDejp06dkZWVFt2/fppMnT5Krqyv5+fmJEkOuWxVSN8FLnVzIcf3ILfUtR6In9XHIkRzJcZ7kaCHO6K6D9iWWPJu8yHFhCAgIoHr16lGxYsV0rS2//vor/f3334LKDQsLoyJFipCZmRmp1Wr66aef9Nb36tWLvv/+e0ExtKRuFdG6du0a7du3j3bt2qX3EkPRokV1LVUfXxTu3Lkj2gBy69evp/fv34tSVkYSEhJo4MCBlC9fPlKpVGRqakpqtZp69eql6+8klFy3KqQmdXIhx/Ujt9S3HIme1MchR5In5XmSs4X47du3eq+XL1/SgQMHqE6dOnTo0CFRYhDl4eQlswuDsf0ePvb7779TkSJFaMaMGWRubq77IK5bt46aNGkiuPyXL1/S33//Tf/995/Bun/++Uf3i5zT3blzh6pWrarXJ+jjTF0MBQoUoFu3bun+r62Lc+fOidI3SOvNmze0atUq8vX1pdevXxMR0YULF+jRo0eixSBK65vz77//0tatW3XHJRa5WiSlboKXOrmQI7HQUnp9y5HoSX0cciR5Up4nOVuIMxIcHEw1atQQrbw8m7xoPXjwQJILQ8WKFXWPSn/8Yb9y5QoVLlxYtDhykLJV5JtvvqH27dvTy5cvqUCBAnT9+nU6ceIE1a5dm44fPy5KjNatW+tapwoUKEB3796llJQU6tKli2hNvmFhYWRnZ0dlypShfPny6ep70qRJ9N1334kSIyN//fUXValSRZSy5PiikaMJXq7kQsrEIiNKq2856kLq45AjyZPjPMnRQpyR8PBw0Vq6iTh5IaK0p04+ffJEqI+fCPr4w37r1i3Knz+/aHEOHTpEEydOpAEDBlC/fv30XkLJ0SpSuHBh3aPj1tbWdOPGDSIiOnz4MFWvXl2UGFeuXCF7e3tq1aoVmZmZUefOnalixYpUtGhRioiIECVGs2bNdE98fVzfISEhVLJkScHlL1++nDp16kQ9evTQtbZpz5GFhQUNGTJEcAwieS6gcj4CLHdyIVZikZvqW0vKupD6OORI8rTk+MwmJCTQw4cP6cGDB3ovMXw6LEhoaCjt27ePGjduTPXr1xclBlEeT15Wr15NlSpVIjMzMzIzM6NKlSrRqlWrRCm7YsWKur4tH1+gFy9eTO7u7qLE8PPzI7VaTbVr16b27dtThw4d9F5CydEqYmNjo2uOdXV1pSNHjhBR2m0Fc3NzUWIQpd2HnTFjBnXp0oVat25NkyZNoidPnohWvrW1tS4R+ri+79+/L7hZedasWWRqako1a9YkS0tLsrCwoJ9//pkcHBxo1qxZep21xSLlBfRL9qsRI7mQOrHIbfWdETFbkLSkOg45k7xPiXmebt26RQ0aNJB0ALlP/9jVvurWrUvh4eGixCDKw8nL5MmTydLSknx9fXW3QXx9falAgQI0efJkweWvWrWKnJycaMuWLWRpaUmbN2+mGTNm6P4vBgcHB1FG0s2IHK0iDRo00N1e69GjB7Vq1YpOnjxJvXv3pkqVKokSQw52dnZ08eJFItL/Qj5w4AAVL15cUNnlypXTzcZ6/PhxUqlU1LZtW4qNjRW209kg5gVU6iZ4KZMLORKL3FTfcrUgZUTsBEmq5Eiu81SvXj1q1KgR7d27ly5dukShoaF6LzF8OixIZGSkJLeq8mzyUqRIEQoMDDRYHhgYKFqflI0bN1KZMmV0maeTk5NuHAsx2NrainbbIz1ytIoEBQXRX3/9RURpg8iVL1+eVCoVFSlShA4fPixKjLVr19K2bdsMlm/btk20KdoHDBhAHTp0oMTERF2/mgcPHpC7uzuNHDlSUNn58+fXezTdzMyMzp8/L3CPDcl1AZWyCV7q5EKOxCK31LdcLUhfMkESIzmSs6XNwsJC1NaPjEjZnUErzyYvBQsWTDdzvnnzJhUsWFDUWHFxcekODCTU+PHjadq0aaKXq/WlWkVev34tah+ksmXL6hKvjwUHB1O5cuVEifH27Vvy8PAgGxsbMjExIWdnZzI1NaVGjRoJ/mL7dGwGbXIkJjkvoFI2wUudXMiRWOSW+pYj0ZPjOKROjuRsaatVqxadOHFC9HI/JnV3Bi0VEZE4Uzwqy/Dhw2FqaooFCxboLR87dizev3+P3377TVD5zZo1w44dO2BjY6O3PCYmBh06dMCRI0eMKtfHx0f3/9TUVGzYsAFVq1ZF1apVDWbv/PTYsmv//v2Ii4tDx44dERERgW+++Qa3bt1C4cKFsXXrVjRr1kxQ+UlJSTA3N0doaCgqV64sqKzM5M+fHzdu3ICLi4ve8vv376NixYqiTt9+8uRJXL58GbGxsahRowY8PDwEl6lWqzF48GBYWFgAAH777Tf06tULBQsW1NtOSH2XL18eP/74I/r06YMTJ06gcePGaNOmDbZu3QpLS0tB+5+Rhw8f4sqVK4iNjYW7uzvKli0ruExzc3PcunULzs7OAACNRoNTp06hZs2agssG0uri+fPnsLOzAwBYWVnh8uXLKFWqlCjla2PkhvqWui4A6Y9j9uzZmDJlCqpWrYobN26AiDBp0iQsWbIEI0eOxPfff49ChQoJiiHHedI6cuQIfvrpJ8ycOVOyGZ+LFSuGuXPn4rvvvhNcVmbydPISEBAAZ2dnfP311wCAM2fOIDIyEr1799arVGMuEmq1Gs+ePYO9vb3e8hcvXsDJyQlJSUlG7XfTpk2ztJ1KpTI6QcpMVFQUChUqBJVKJUp5rq6u2LlzJ6pVqyZKeekpUaIEli5dajDd+65du/DDDz/g0aNHksUWQ5MmTT57voXWt5wX0Izs2LEDfn5+uHz5stFlSJ1cyJFY5Jb6liPRk/o45Ejy5DhPH8cCYPD5IiKoVCqkpKQIjlG4cGGcPXsWpUuXFlxWZvJJWnoOdvXqVdSoUQMAcOfOHQBAkSJFUKRIEVy9elW3XXa/pD++8F6/fh3Pnj3T/ZySkoKgoCA4OTkZvd9Hjx41+r3ZkVGriK2trahxJk2ahB9//BF//PGH6GVr9ejRAyNGjICVlRUaNWoEADh27BhGjhyJ7t27ixbn8OHDOHz4MF68eIHU1FS9dWvXrjW63ODgYIF79nkJCQnInz+/7mczMzNJ6mPFihU4ePAgzMzMMHLkSNSpUwdHjhzBmDFjcOvWLfTu3VtwjMmTJ+uSi8TERMyYMUO05KJRo0a4efOm7ud69erh7t27etsITexzU31LWReA9McRGRmpa2Fu2LAhTE1N4e/vL3prpNTnSUuO74+BAwciMDAQkydPljROnm15kYpardZdvNI7tebm5liyZAn69+8vOFZ0dDRSUlIMflmjoqKQL18+wU2AcrSKuLu7IyIiAklJSShZsqTBReHixYuCYyQmJuK7777Dn3/+iXz50vL11NRU9O7dG8uXL4eZmZngGP7+/pg2bRpq1aqFYsWKGXyB7dy5U3CMrLK2tkZoaChcXV2z/B45WhTkaIKXo9Uip8mp9S1HXUh9HHK0iuS2z+zIkSMREBAgWXcGrTyfvERERODOnTto1KgRzM3Ndc1nxnrw4AGICK6urjh79qzuQw+k/VVgb28PExMTMXYdrVu3xv/+9z8MGzZMb/ny5cuxe/du7N27V1D5a9aswY4dOyRtFfHz88v0fE+dOlW0WLdu3UJYWBjMzc1RpUoVlCxZUrSy5brPmxVWVlYICwvL1peZHBfQL9Gv5kszJrHIrpxa33KQ+jjkSPLk9vbtW6xZswbh4eEAgEqVKqF///4Gx2SszLo2iPmZyrPJy+vXr9G1a1ccPXoUKpUKt2/fhqurK/r3749ChQph/vz5X3oXP8vW1hYhISGoWLGi3vIbN26gfv36eP36taDy5WgVyS3kus+bFcZ8mckhJ/Sr+ZTUyYUcdZFT6zu75Ej0sisnJnlCztP58+fh6ekJc3Nz1K5dGwBw7tw5vH//HgcOHNB1pVCCPNvnZfTo0TA1NUVkZKTel3+3bt3g4+MjSvJy+/ZtHD16NN0+EFOmTBFcfkJCApKTkw2WJyUlifIETfv27UXrmJsRV1dXnDt3DoULF9Zb/vbtW9SoUcOgP0FW+fj4YPr06bC0tNR7Qis9YvzVJNd93pzCmAuoXP0ssiOP/u2WbXIkFnLURXaPQ47+R9kl5DyNHj0a7dq1w6pVq3S30JOTkzFw4ECMGjUKx48fF2s3JZdnk5cDBw5g//79KF68uN7ysmXL4sGDB4LLX7VqFYYOHYoiRYrAwcFBLwlQqVSiJC+1a9fGypUrsWTJEr3ly5cvF+WvWT8/P8FlfM79+/fT7eGekJAg6CmgS5cu6Z7ounTpUobbiZWcffjwAStXrsShQ4ckvc+bUxh7AZWrYyITV25J8qQ+jpzYevSx8+fP6yUuAJAvXz6MHz8etWrV+oJ7ln15NnmJi4vTXUQ/FhUVBY1GI7j8GTNm4Oeff8aECRMEl5VZDA8PD4SFhaF58+YA0p54OXfuHA4cOCC4fKlaRQBg9+7duv/v379f7wssJSUFhw8fFtQp7uNe9XL0sL98+TKqV68OAHpPqwHiJUhZJXe8rJLjSZ28iM9ZzpHTkzxra2tERkaiQoUKessfPnwIKyurL7RXxsmzyUvDhg0REBCA6dOnA0i7AKSmpmLu3LlZHkslM2/evEGXLl0El5OZ+vXr4/Tp05g7dy62bdsGc3NzVK1aFWvWrBFlwC+pWkUAoEOHDgDSznufPn301pmamsLFxUW0fkcbN25Ex44d001WxZCSkgJ/f39UqVJF8NMyYsipF9Cc2AQvNTkSi5xa3yzn6datGwYMGIB58+ahXr16AICQkBCMGzcOPXr0+MJ7lz15NnmZO3cumjdvjvPnzyMxMRHjx4/HtWvXEBUVhZCQEMHld+nSBQcOHMCQIUNE2NuMVa9eHYGBgaKWKXWrCABdH6BSpUrh3LlzKFKkiKDyMjN69GgMGTIE7dq1Q69eveDp6SnaE18AYGJigpYtWyI8PDxHJC/79u0TNJZQTiFHE7zUyYUciUVuqW9uQcoaIedp3rx5UKlU6N27t66/pKmpKYYOHYrZs2eLtYuyyLPJS+XKlXHr1i0sXboUVlZWiI2NRceOHfHDDz+gWLFigssvU6YMJk+ejP/++y/dYZhHjBghOAaQNsDeunXrcPfuXSxcuBD29vbYt28fSpQogUqVKhlVppytIvfu3ROlnMw8ffoUQUFB2Lx5M7p27QoLCwt06dIFXl5eur8+hKpcuTLu3r0ryaiYQNptzjlz5mDHjh24f/8+VCoVSpUqhc6dO2Ps2LF6rUoNGjSQZB8+lltaFKSOYWxiwfUtjdyQIAk5T2ZmZli0aBFmzZqlG5y1dOnSkrVKSynPPiottcy+xFQqlaD+IlrHjh1D69atUb9+fRw/fhzh4eFwdXXF7Nmzcf78eWzfvl1Q+XK0igDSjUybnvj4eOzcuROBgYE4dOgQihcvrvslFiIoKAgTJ07E9OnTUbNmTYPHyoUMGJiYmIh69erh6tWraN26NSpUqAAiQnh4OIKCglCjRg0cP37cIEGWUm55BPjkyZP46quvstXPLTuJhTHyan0bUxfZJfVxyNFaKMd5UoI82/Jy+/Zt7Nq1S3fxcXV1RYcOHUT7y1mOFgVfX1/MmDEDPj4+ep2tmjVrhqVLlwouX45j+NzItGKzsLCAp6cn3rx5gwcPHugGahKqTZs2AIB27drpHYMYc4YsW7YMjx49QlhYGMqXL6+37saNG2jSpAmWL1+O4cOHGx0ju3LyrQopWy0SExPRuHFjXWLxv//9T5dY/Pzzz9i3b5/gxCI31XdOa0GS+nNrbFuA1OcpqyO6i/3HopTyZMvLrFmzMGXKFKSmpsLe3h5EhJcvX8LExAQzZ87E2LFjv/QuZkmBAgVw5coVlCpVSu8vivv376NChQr48OGD4BhSt4rINTKttsVl06ZNOHz4MJydndGjRw94eXkZ9Lw3xrFjxzJd37hxY6PLbty4Mbp27Yoffvgh3fVLlizB9u3bP7sPnyN1i0J2GfNXstStFtom92PHjmWYWEyaNElQYpFb6luuFqSc9Lk1plVEjvOkVqtRsmRJuLu7Z5pgyTmNiWCUxxw5coTUajVNnTqVoqKidMtfv35NkydPJhMTEzp27JhRZY8ePZpiY2N1/8/sJQYnJycKCQkhIqICBQrQnTt3iIhox44d5OrqKrh8Pz8/UqvVVLt2bWrfvj116NBB7yUGW1tbioiIEKWsjHTr1o0sLS3Jzs6OfvjhBzp16pSk8cRWpEgRunr1aobrr1y5QkWKFBEUIyEhgWrWrEkajYY6dOhAvr6+NGHCBGrXrh2ZmZnR119/TYmJiYJiZJeVlZXuM51VCxcupKJFi9KNGzcM1oWHh1PRokVp8eLFRu9To0aNaOnSpRmuX7x4MTVq1Mjo8olyT31LXRdE8hxHbGwsTZ48mSpVqkSWlpZUoEABqlKlCvn7+1NcXJygsonkOU/Dhg2jQoUKUfXq1WnRokX0+vVrQeXlBHkueenatSsNHjw4w/WDBg2i7t27G1V2kyZN6M2bN7r/Z/Rq2rSpUeVrHTt2jBITE2nMmDHUoEEDevr0KVlZWdHt27fp5MmT5OrqSn5+foJiEBE5ODhQQECA4HIyM378eJo2bZqkMXr27En//vsvJScnSxrn+PHj5OXlRXXr1qVHjx4REVFAQACdOHFCULn58uWjp0+fZrj+yZMnZGpqKiiGHBfQ7Po4Ic8qqZMLORKL3FLfciR6Uh+HHMmRHOeJiOjDhw8UGBhIHh4eZGFhQV26dKGgoCBKTU0VXPaXkOeSFxcXl0y/TI4fP04uLi4y7lH2qdVqev78OSUkJNDAgQMpX758pFKpyNTUlNRqNfXq1UuUL2o5WkVGjBhBNjY21KhRI/L29ha9hSoxMZGaNWtGt27dEmFvM7Z9+3YyNzengQMHkkaj0X3pLlmyhFq3bi2obLVaTS9evMhw/bNnz0itVguKIdcFNDtOnDhBHz58yNZ7pE4u5Egsckt9y5HoSX0cciR5cpynT92/f5/8/PzI1dWVSpQoQe/evRO1fDnkuQ67z58/h4uLS4brS5UqhWfPnsm3Q0ag/3/P0szMDKtWrcLkyZNx9epVxMbGwt3dXZQB6gB55uuRemRaU1NTXL58WXA5nzNjxgwsX74cvXv3xpYtW3TL69evjxkzZggqm4jQvHlzvSG9P5be/FbZdf36dTRp0iTD9U2bNsW0adMEx5G6Y+Lbt28NRoT+WOHChREdHW3UvgNp4xNlNkaQWq0W1DkbyD31LXVdANIfx44dOzB58mSD/k0AUKFCBUyaNAnbt28X1MdJjvP0KbVaDZVKBSIS/Hn9UvJc8vLhwweYmZlluN7U1BSJiYky7pFxPv5iL1GiBEqUKCF6DDnm65Fj6P5evXphzZo1kg7CdPPmTTRq1MhgecGCBfH27VtBZU+dOvWz23Tq1ElQDDkuoHI8qSN1ciFHYpFb6luORE/q45AjyZPjPAFpI6Pv2LEDa9euxcmTJ/HNN99g6dKlaNWqFdRqteDy5ZbnkhcAWL16NQoUKJDuunfv3sm8N8bp27fvZ3u079ixQ1AMuefr0U458OlkmUIlJydj7dq1OHToULpjsIiRhDk4OCAiIsKgVe/kyZOCx3zIypeZUHJcQOV4BFjq5EKOxCK31LcciZ7UxyFHkifHeRo2bBi2bNkCZ2dn9O/fH5s3b5Z8/C6p5bnkpUSJEli1atVnt8nprKysYG5uLmkMOVpFUlNTMWPGDMyfPx+xsbEA0o5tzJgxmDRpkih/EVy9ehU1atQAANy6dUtvnVhJ2KBBgzBy5EisXbsWKpUKT548wenTpzF27FhJb7uJRY4LqBxN8FInF3IkFnLILS1IUh+HHEmeHOdp+fLlKFGiBFxdXXHs2LEMH7MX+gevnPLkOC9Kp1ar8ezZM9jb28sWU6pWkYkTJ2LNmjXw9/dH/fr1AaS1Vvj5+WHQoEH4+eefRY0nFSLCzJkzMWvWLMTHxwMANBoNxo4dq5v801ju7u5ZSrIuXrxodAx/f/8sbSfky9vOzg7BwcEZTltx9epVNG3aFC9fvjQ6Rm6QW+pbDlIfh1qtRuXKlTNNjq5du5bj+4307ds3S5+pdevWybA34uDk5TOqVKmCvXv3wtnZOdvvvXPnDhYuXKgbxdXNzQ0jR45E6dKlBe2TiYkJnj59KnnyIkeriKOjI5YvX4527drpLd+1axeGDRuGx48fC46hFRERgTt37qBRo0YwNzfXjX4rpsTERERERCA2NhZubm4Z3p7MjtzyRWNqaoqHDx/CwcEh3fVPnz5FyZIlc3SfM04s8pa8WhePHj2Co6Njju4Lk+duG2XX/fv3kZSUlO337d+/H+3atUP16tV1LQohISGoVKkS9uzZgxYtWhi9T3Llm5MmTdJ1dP20VeTDhw+itIpERUWlO8JthQoVEBUVJbh8AHj9+jW6du2Ko0ePQqVS4fbt23B1dcWAAQNQqFAhUSaZ7N+/PxYtWgQrKyu4ubnplsfFxWH48OGCRiOeOnUqiAgPHz6EnZ2d5LcLpSJHE7zUyYV20lIp5Zb6liPRk5ocSUlOPE9ubm6Sz9EkFCcvEvH19cXo0aMNnnDx9fXFhAkTBCUvR48eha2tbZa3N7b1aMOGDVi9erVeq0jVqlXh5OSEYcOGiZK8VKtWDUuXLsXixYv1li9duhTVqlUTXD4AjB49GqampoiMjETFihV1y7t16wYfHx9RkpcNGzZg9uzZenNMAcD79+8REBAgeCoFIkKZMmVw7do10R6F/5gcF1A5+llInVzIlVjkhvqWI9HLiV/82SXHecouJdyQ4eRFIuHh4di2bZvB8v79+2PhwoWCys7uPDnGth7J0Soyd+5ctG3bFocOHULdunUBAKdPn8bDhw+xd+9eUWIcOHAA+/fvN+ivU7ZsWTx48EBQ2TExMaC0wR7x7t075M+fX7cuJSUFe/fuFeX2nlqtRtmyZfH69WtJvszkalH4HDGe1JE6uZA6sQByT31LXRdSH4ccyVFuaWmTGycvErGzs0NoaKjBhSc0NFTWjrZCyNEq0rhxY9y6dQu//fYbbty4AQDo2LEjhg0bBkdHR1FixMXFpTs5W1RUlOBp5W1sbKBSqaBSqVCuXDmD9SqVKsv3zT9n9uzZGDduHJYtW4bKlSuLUqaWHBdQufoFSJ1cSJ1YaCm9vgHp60Lq45CrVUSOhDi34eRFIoMGDcLgwYNx9+5d1KtXD0Ban5c5c+bAx8fnC+9d1sjRKgKkddqV8qmihg0bIiAgQPfUj0qlQmpqKubOnYumTZsKKvvo0aMgIjRr1gx//fWX3u08MzMzlCxZUrQkrHfv3oiPj0e1atVgZmZmcKEW2hqWWy6gciQXUiYWWrmhvuWoCymPQ64kT66EODfh5EUikydPhpWVFebPn4+JEycCSPuS9vPzw4gRI77w3mWNlK0it2/fxpQpU7BixQpYW1vrrYuOjsbQoUMxY8YMUTqMzZ07F82bN8f58+eRmJiI8ePH49q1a4iKikJISIigsrW38O7duwdnZ2dJe+cLvd34OVJfQOXsnyB1ciF1YgEov761pK4LqY9DrqRejoQ4N+FHpT9DO6iPMY9Ka2lH7f20M6dcrKysEBYWlqN6jg8ePBg2NjaYO3duuusnTJiAmJgYLFu2TJR40dHRWLp0KcLCwhAbG4saNWrghx9+QLFixUQpH0gbjfPs2bN48eIFUlNT9db17t1btDhS2rNnD+bOnSvJBVTOx04LFSqE+Ph4JCcnS5JcbNiwIdP1ffr0EVS+XKSsby2p6wKQ/jgqVaqENWvW4Ouvvxa9bC05zlNWmZiY6J7KzKk4efmMnPjFn13ZPQY5WkXKly+PjRs34quvvkp3/YULF9CzZ0/cvHnT6Bhy2rNnD7y8vBAbGwtra2u9FgaVSiXahefOnTtYt24d7ty5g0WLFsHe3h779u1DiRIlMhz8LTukvoDK1TExtyQXSq9vQJ66kPo45EjyctJnVgnJC982ElnTpk0/2zSuUqlw+PBhmfYorfNwdia7++WXX+Ds7GyQuABpEw06Ozvjl19+EdQqEhkZmWnH5SJFiuDhw4dGlw8Ar169QlxcHEqWLKlbdu3aNcybNw9xcXHo0KEDevbsKSiG1pgxY9C/f3/MnDkz3c7BYjh27Bhat26N+vXr4/jx4/j5559hb2+PsLAwrFmzBtu3bxccQ+pbFXI1wctxoZc6scgN9Q3IUxdSH4cctwlzUkIt1TVMTJy8iEw7kWF63r17h8DAQCQkJMi3QwBevnyZrUeljx07ho0bN2a4vmvXroK/9AsWLIg7d+7oJRYfi4iISDd5yo7hw4fD0dFRN47Lixcv0LBhQzg6OqJ06dLo27cvUlJS8N133wmKAwCPHz/GiBEjJP2l9/X1xYwZM+Dj46N3C7JZs2ZYunSpKDGkvoDK2TFRyuRCjsQiN9S3ltSJntTHIUeSB0h/nnIVYpkqUKAA3blzR1AZSUlJtHDhQrKzs6MyZcrQ5s2bRdq7rMnuMeTPn5/u37+f4fr79++Tubm5oH3q0qULdejQIcP17dq1o86dOwuK4eLiQsHBwbqff/nlFypdujQlJSXpfq5Tp46gGFrffvstbd26VZSyMmJpaUl3794lIv06vXfvHmk0GtHiRERE0KRJk6h79+70/PlzIiLau3cvXb16VZTyd+/eTQ0aNKArV66IUl56goODydzcnDw8PMjMzEx3rmbNmkWdOnUSXP7XX39N8+fPJyL9ujhz5gw5OTkJLp8o99S31HWhJfVxSE2u85QVYnzvSY2Tl88QWokbN24kV1dXKlasGP3222+6L045ZfcYihYtSocPH85w/aFDh6ho0aKC9unixYuk0WioU6dOdObMGXr79i29ffuW/vvvP+rYsSNpNBq6cOGCoBifJmGtW7emcePG6X6+efMm2draCoqhtXr1aipRogRNnTqVtm/fTrt27dJ7icHJyYlCQkKISL9Od+zYQa6urqLEkOMCamNjQ2ZmZqRWqyl//vxUqFAhvZcYpE4u5Egsckt9y5HoyXEcUidHcpynrOLkJRcwthL37dtH1apVI+v/1965x1VVbXv8t7cIGwQUEPABgiJqGt4sLU2tfNw0H/gWH6Sp2fFUPlHQfIHeFF+l9Olz9JxEQOOoedVMNL2RWaL4BrtFR0GBYxd8HlEUBLbj/uFn79N2SwF7zbnYi/H9fNYn91w0x5hzLOb+MdZ8uLvTsmXLqLi4WIB3VaO6bZCRFSEi+uqrr8jb25v0er3F5e3trcgXvo+PD2VkZJg/e3l50a5du8yfL168SA0aNLDZDhGRTqer9NLr9YrYiIiIoB49elBBQQG5ubnRpUuX6NixY9SqVSuKjo5WxIaMATQhIeF3LyUQLS5kCAutxFuG0BPdDhniSFamrSq4ubmxeKmtJCYmUmlpqVX5w4cPKTEx0fz5888/r5bwOHnyJL322mtkMBho1qxZdOPGDUX8tYXqihcZWRETDx48oN27d9Pq1atp1apVtGfPHrp//74idYeGhtLkyZPJaDTSF198QY6OjnT79m3z/f3791O7du0UsSWDhw8f0ttvv00ODg6k0+mofv36pNfrKTw8nCoqKhSxUZsGUFsQLS5kCAutxFuG0BPdDhkiT0Y/VRXOvNRi9Hq9OfX3W27evGnTX8o6nY5cXFxo1qxZtGHDhkovmdTkQRSdFakuzz77LOXn51fr/8nMzKTGjRubX1EsWrTI4n54eDj96U9/UtJNKeTl5VFKSgrt2LGDLl68qGjdsgZQ0Sl40eJChrAwYe/xliH0RLdDhsiT0U9VJT8/X/HnWGnq7D4ver0e165dg7e3t0V5ZmYmevXqVeOlb4GBgVVaKn358uUa1f9bkpKSEBYWZnU+T1lZGbZv327eGC05ORlDhgxBgwYNqlV/SUkJvv76a2RnZ4OI0KZNG7z++uuqLKOr6X47N2/eRFpaGpo0aYKXXnrJ4l5KSgo6dOiAwMDAGvv15LlPlWEvuyrPnTsXJ0+exBdffIE2bdrg3LlzuHbtGiZMmIAJEyYosoHckyt1srKy0KpVK8TGxuLMmTOKrNQpKyvDe++9h4SEBBiNRjg4OMBoNGLcuHFISEhAvXr1bLYBPF7y/7//+78oLi5Gp06d7G5rdxnxlhEL0e3w8/PDzp078fLLL1uMRXv27MHcuXORk5Njcxtk9FNpaSk++eQTHDly5Kmbadbm07efpM6JF9MW5ZmZmejQoQMcHP69WtxoNOLKlSvo37//U0+Erm3Uq1cPBQUFVvul3Lp1Cz4+PjAajVL8CAkJwYEDB2zahfiPsGWzwKqKvJrQsmXLP/wZpcQqEWHXrl2VDjy7d++22YaMAbRbt24YNWqUeQmwKa6nTp3C8OHDcfXqVZttmLBncaGVeJsQGQvR7ZAh8kyI7Kfx48fj8OHDGDlyJHx9fa3+0JZ1eKoS1DnxYtqiPCYmBhEREXB1dTXfc3R0RGBgIEaMGAFHR0cp/tjyxS8qe1RdZOxCbIuN2iLybGXmzJnYtGkTevXq9dSBZ8uWLYrZEjmAurq64scff0TLli0t4pqbm4t27dqhtLRUMVuikCEstBJvmYhqh0yRJ5KGDRviwIED6N69u9qu2Eyd26TOpCwDAwMRFhYGg8Ggqj+5ubnV2kAO+Hf2SKfToU+fPpVmj5jHENFTX+VdvXoVDRs2lOqLLWJ169at2L17NwYMGCDAM0tatGiBFi1aCKm7UaNGKCgosMpanT9/Hs2bN1fEhmhxMWvWrN8VFkqglXjLEHomRLXD0dERf/vb37B48WJhIk9GPzVv3ly1M/aUps6JFxO1aSvm6jJ06FAAQEZGBvr161dp9qiuUxtFXk3EqomGDRsKP2tExgA6ZswYREVF4YsvvoBOp8OjR4+QlpaGuXPnKnaApWhxIUNYaCXeMoSeLIEkUuTJ6Kd169YhKioKGzdurHR3c3uhzooXo9GIjz/+GDt37kR+fj7Kysos7ss8wbO61LbsUW1FayIvOjoaMTExiI+PF3aooYwBdMWKFXjvvffg7+8Po9GI9u3bm1PwixYtUsSGaHEhQ1hoJd4yhJ7odsgQRzL6qXPnzigtLUWrVq3g4uJideZdbf7ee5I6K15iYmLw2WefISIiAosWLcLChQuRm5uLvXv3YsmSJWq7VyXsOXtUXap7uCSgPZE3evRo/P3vf4ePjw8CAwOt+kOJlQIyBlAZKXjR4kKGsNBKvGUIPdHtkCHyZPTT2LFj8euvv2LFihXC2iGLOitePv/8c/ztb3/DwIEDER0djbFjxyIoKAgdO3ZEenq6XSxttefsUXWp7uGSv2XixIm4c+cOtm3bhpycHMybNw+enp44d+4cfH19FZtnIZqJEyfi7NmzCA8Pt+sB1ITIFLxocSFDWGgl3jKEnuh2yBB5Mvrp+PHjOHHiBP7jP/5DSP0yqbPipbCwECEhIQAer34oKioCAAwaNAiLFy9W07UqU1uyRzXJisjkwoUL6Nu3Lxo2bIjc3FxMnToVnp6e2L17N/Lz85GUlKS2i1UiJSUFhw4dQo8ePYTZkDGAykjBixYXMoSFVuItQ+iJbocMkSejn9q1a4eSkhKb66kN1Fnx4ufnh4KCArRo0QJBQUE4fPgwnn/+eZw+fdpqP5CaUNW9RTZt2gRfX98a2agt2SNbsiIymD17Nt566y2sXr3aYqb9gAEDMG7cOBU9qx7+/v5wd3cXakPGACojBS9aXMgQFlqJtwyhJ7odMkSejH6KjY1FREQEPvzwQ4SEhFj1k+jnTUnqrHgZNmwYUlNT8dJLL2H69OkIDw/H5s2bkZ+fj9mzZ9tc/6RJk9C/f3+rvUXu3buHSZMmmcWLLV+eWsgeyeDMmTP461//alXevHlzFBYWSvXFlizVunXrEBkZiY0bN9q0K/DvIWMAlZGCFy0uZAgLrcRbhtAT3Q4ZIk9GP5lWV/bp08ei3LSdhL3seQXUYfESGxtr/ndYWBgCAgJw/PhxBAcHY/DgwTbXL2NvEdHZI63g5OSEu3fvWpVfvHjRaoM/0diSpQoPD8eDBw8QFBQkbKWAjAFURgpetLiQISy0Em8ZQk90O2SIPBn9dOTIEaH1y6TOipeVK1fC19cXkydPBgB07doVXbt2RXx8PFatWoWoqKga1StzbxHR2SOtEBoaimXLlpmPfNDpdMjPz0dUVJRdLZVev369cBsyBlAZKXjR4kKGsNBKvGUIPdHtkCHyZPTTq6++KqReNahzxwOYCAwMRHJyMl5++WWL8pMnT2LMmDG4cuVKjepV8/iB9PR0RbNHVUXGuUM1PVwSAIqKijBy5EicOXMG9+7dQ7NmzVBYWIhu3brhwIEDNaqzpsg4SsEWUlJS8MknnwgdQEtKSjBs2DCkpaUJS8F7eHjgwYMHqKioECIuEhMTf/e+vWxjICPeomMBiG9Hu3btsHPnTnTs2FHxuk3I6Kfvv//+d++/8sorNtuQRZ0VLwaDAVlZWVZblF++fBnt27e36XwVo9GIbdu24fXXX0fTpk1tdbVSnswemYiPj8eNGzdqnD2qLvZy7tCxY8dw4cIFFBcX4/nnn0ffvn0Vq7uq2CpejEYj9u7di6ysLABAhw4dEBoaqtjZKjIG0NGjR+PIkSNCD4fTirjQQrxlxEJ0O2SIPBn9pNfrrcp++/tnT3Ne6qx4CQ4OxtKlSxEeHm5RvnXrVixdutTmU4ArE0dKIip7ZEJGVqS2HC4pC1vES3Z2NgYMGIBff/0Vbdu2BQD84x//gL+/P1JSUhAUFGSzfzIG0AYNGghPwctAtLDQSrxlILodMkSeDEyLOkyUl5fj/PnzWLx4MT788EOriby1mTorXlavXo3Vq1djzZo16N27NwAgNTUVkZGRiIiIwIIFC2yqv3Pnzli1apXQh0Fk9ggQmxUxzQ3KzMxEhw4dKp0bZJqnYiupqalITU196r4i8fHxitioCraIlwEDBoCI8Pnnn8PT0xPA41iEh4dDr9cjJSVFaXeFICMFD4gVFzKEhVbiDYgXeqKRJfLU6qejR49izpw5OHv2rFA7SlJnxQsRYf78+YiLizPvTGswGBAVFaXIBm9ff/01FixYgOXLl+OFF16wykooMblMdPZIZFZE5tygmJgYLFu2DJ07d0bTpk2tXlPs2bPHZhsyslQNGjRAenq6eXm8iczMTHTv3h3FxcU1b8BvED2AykjBixYXMoSFVuItQ+gB9i+QZPXT0/jll1/QuXNnxZ4pKVAd5969e3Tq1Cn68ccfqbS0VLF6dTqd+dLr9ebL9FkJVq1aRV5eXhQfH0+5ubmUm5tLmzdvJi8vL1qxYkWN633uueeoU6dOpNfrKSQkhDp16mS+OnbsSG5ubjRq1ChF2pCQkEAlJSWK1FUZTZo0oaSkJKE29Ho9Xbt2zar85s2bisXbw8OD0tLSrMqPHTtGHh4eiti4dOkSBQcHk4uLiznmLi4u1LZtW8rOzlbERqNGjcjR0ZH0ej25urqSh4eHxaUEb7zxBvXv359u3bplLrt58yb179+fBgwYYHP9Li4udOHCBavyjIwMatCggc31E2kn3qJjQSSnHRUVFbRr1y5avnw5LV++nHbv3k0VFRWK1E0kp58yMzMtroyMDDp48CC9+uqr1L17d0VsyKLOZl5Ec/To0d+9r8SSNRKUPVJzxZQIvLy8cOrUKaF/uciYuzNhwgScO3cOmzdvxosvvgjg8fymqVOn4oUXXkBCQoLNNmRkFGTNqxGZtfD09MT+/fut5pulpaVh8ODBHO/fICODJLodMrIiMvpJr9dDp9Phya990zYh7dq1s9mGNFQUToxCiMoeyciKVFRU0Jo1a6hLly7k6+sr5K/wyMhIWrZsmSJ1PYnMLNW//vUvCg0NJZ1OR46OjubsxdChQ+lf//qXIjZkZBRkIDpr8eabb1KHDh0oPT2dHj16RI8ePaITJ07Qs88+SxMnTrS5fiLtxFtGBkl0O2RkRWT0kylDb7ry8/OFj/GiqLOb1Mngzp072Lx5s8U72MmTJyu2w64JV1dXdOnSRdE6ATkrDWQcLllaWoq//vWv+Oabb9CxY0erlQIfffRRjeseOnQoACAjIwP9+vWrNEulBI0aNcKXX36J7Oxs8zP1zDPPoHXr1orUDzzejfjevXtW5cXFxYpm2kTPTxg0aBDeeecdq6zFtGnTEBoaanP9cXFxmDhxIrp162Z+nioqKhAaGqrY5nJaibfoWADi23H06FGkp6ebszrA44xubGwsunfvbnP9gJx+CggIqDWLF2xGbfWkVU6fPk2enp7UvHlzGjZsGA0bNoz8/PzIy8uLzp49q7Z7VUJGVqRVq1a0f/9+IiJydXU1v5/esGEDjR07VhEbr732WqVXr169FLEhI0sVExND9+/ftyp/8OABxcTEKGJDRkZBxvwEGVkLosdt2bdvH+3bt48uXbqkWL1E2om3jFiIboeMrIiMfoqOjia9Xk8vvvgiDRkyhIYOHWpx2RMsXgTRo0cPeuutt6i8vNxcVl5eThMnTqSePXuq6FnVWbx4MTVt2pTWrl1LBoOBli9fTlOmTCEvLy/asGGDIjZcXFwoLy+PiB5PrDUJu5ycHHJ3d7e5/oqKCjp69Cjdvn3b5rrURsakYBkDqIwUvAlR4kKGsNBKvE2IFHqi2yFD5JkQ2U8yFi/IgsWLIAwGA2VlZVmV//TTT+Ts7KyCR9VHRlakTZs2lJ6eTkRE3bt3p5UrVxIR0fbt28nb21sRG05OTnT58mVF6qoMGVkqnU5H169ftypPTU2lxo0bK2LDhMgBVMY8C9HiQoaw0Eq8ZQg9E6LaIUPkyegnT09PxbKbasPiRRA+Pj506NAhq/Kvv/6afHx8VPCo+ojOihARRUVF0YcffkhEjwWLg4MDtW7dmhwdHSkqKkoRGy+88AJ98803itRVGSKzVI0aNSIPDw/S6/Xmf5sud3d30uv19O677yrSDhkDqIwUvGhxIVJYaC3eMoSeLIEkUuTJ6CeRixdkw+JFENOnTyc/Pz/avn075efnU35+Pv39738nPz8/mjlzptruVQkZWZEnOXHiBK1bt4727dunWJ0HDx6k5557jr766iv6v//7PyoqKrK4lEBkliohIYG2bNlCOp2ONmzYQAkJCeYrOTmZjh8/brP/JmQMoDJS8KLEhQxhobV4y8ggiW6HDHEko59mzJhBjRo1oldeeYXef/99mj17tsVlT7B4EcTDhw9pxowZ5vSiXq8nJycnmjVrlqLLmUUiIysiAxkbBsrIUn333XcWc6hEIGMAFZmCFy0uZAoLe4+3zAyS6OdWpDiS2U8yFi/IgpdKC8LR0REbNmzAypUrkZOTAwAICgqCi4uLyp5VndjYWPO/w8LCEBAQgOPHjyM4OBiDBw9WxIaMk7GPHDlicx1/hJ+fHwoKCtCiRQsEBQXh8OHDeP7553H69GmrIwNqipubG7KyssybWH355ZfYsmUL2rdvj+joaJuWhHp4eECn00Gn06FNmzZWJ80WFxdj2rRpNrcBELsEeP369SAiTJ48GTExMRbbEpiWrnfr1q3G9Zu2D2jZsiW6d+9ucSaX0th7vEXHApD33BKR1bEiwOMN5H67fLomyOgnEzLGQlnwDrsS+Oc//wkA8Pf3V9mT2ofok7FlMX/+fLi7u+ODDz7Ajh07EB4ejsDAQOTn52P27NkWQrCmdOnSBfPnz8eIESPMh28OHz4cp0+fxsCBA23aXyQxMdE8gK5fv17oALps2TLMnTvXSsiXlJRgzZo1iuzvc/ToUaHi4ty5c6hfv74QYWFCK/EWGQvR7TCJo6KiIri7u1cqjj799FOb2gGIf2Y1h2o5H41TXl5OixYtMqf99Ho9ubu708KFC6msrExt96rEihUraPPmzVblmzdvptjYWEVsVLYSKCcnh5ycnBSxQUT0/fff0/jx46lbt2509epVIiJKSkqiH374QTEbv0XE3B13d3fzXJrY2Fh6/fXXiejxRFc/Pz9FbMh4VSFjnsXZs2ctVjTt3buXhgwZQgsWLKCHDx/aXH/nzp1p165dRPTvZ3Xs2LHUunVrxea0aSXeomNBJK4dMl8TyugnLcHiRRDTpk0jHx8f2rhxo/kQrI0bN1KTJk1o2rRpartXJQICAp66KiQ9PZ0CAwMVsdG6dWvaunWrVXlSUhK1bNlSERu7du0iZ2dnevvtt8nJyYlycnKIiOiTTz6hN954QxEbMoSem5sbXbx4kYiI+vbtS+vXryciory8PDIYDIrYkDGAyphXI1pcyBAWWom3DKEnuh0yRJ6MftISLF4E4e7uTgcOHLAqT0lJUWwCp2hkZEVEnYz9W5577jlKTEwkoscrgUzi5dy5c+Tr66uIDRlCr1evXjRhwgRKSkqi+vXrm5dqfvfddxQQEKCIDZEDqMyJiaLFhQxhYe/xNiFD6IluhwyRJ6OftASLF0F4e3vTzz//bFX+888/K77BlChkZEUePXpEkZGRZDAYzK/XXFxcFN2bwdnZma5cuUJEluJFSREmQ+hlZmbSs88+S+7u7hQdHW0uf//99xXbNFDkACozBS9aXMgQFvYebxMyhJ7odsgQeTL6SUuweBFETEwMjR071mJZdGlpKY0fP95iIKrNyMiKmBB1MjYRUcuWLel//ud/iMhSvCQmJtIzzzyjiA0ZQq8ySkpKFJtHJWMAlZGCFy0uZAiLyrC3eMsQeqLbIUPkyegnLcHiRRBDhw4lNzc3aty4MfXp04f69OlDjRs3Jnd3d/NBjaartiIjKyKDFStWUPv27Sk9PZ3c3Nzohx9+oG3btpG3tzfFxcUpYkOm0BOJjAFURgpeLXGhpLCQgVYySKLbIUPkqSmI7RFeKi2ISZMmVflnt2zZItAT2ykuLkZWVhacnZ0RHBys2L4lsiAirFixAitXrsSDBw8AAE5OTpg7dy6WL1+umI358+cjLi4OZWVlAACDwYCoqChFlv4CgF6vf+peEyaMRqPNNi5cuIDx48cjPz8fc+bMwdKlSwEA06dPx61bt5CcnGyzDZFLgP+I0tJS1KtXD/Xr1xdmQym0Eu/KUDIWotvRu3dv+Pv7o2/fvpgyZQp+/vlntG7dGkePHsXEiRORm5trcxsqw56eWZmweGHqDGVlZcjOzkZxcTHat28PV1dXxW2IFHpffvmlxefy8nKcP38eiYmJiImJwZQpUxSz9SRKDqANGzbEuXPnEBQUhFWrVuHbb7/FoUOHkJaWhjFjxpj3RarNyBAWWom3mijVDjVFHvN0WLwI5vr16/jHP/4BAGjbti18fHxU9qjuMXnyZGzYsAFubm4W5ffv38f06dMRHx+vkmfKkJycjB07dlh92dVW3N3dcfbsWQQHB+M///M/MWjQIMycORP5+flo27YtSkpKbLYhWlyoKSzsLd4yhJ5aKCnytNxPImDxIoi7d+/ivffew/bt280PXb169RAWFoZPP/3UYidIRiz16tVDQUGBlXC8efMmmjRpgoqKCpU8U4bLly+jY8eOKC4utrkuGQOojBS8WuJChrCwt3jLiIUWvvjVFMT2CO9DLIipU6fi/Pnz2L9/v3l76hMnTmDmzJn405/+hO3bt6vsofa5e/cu6PGkdNy7dw8Gg8F8z2g04sCBA3afCSspKUFcXByaN2+uSH179uyx+PzkAKoE69evx/jx47F3714sXLjQfKbRrl27rI6JqClDhgyxKhs5ciQ6dOiAHTt2CPsi6Nq1K9555x0hdQP2GW8ZsRDdDhniSK1n1l7hzIsgGjRogEOHDqFHjx4W5T/88AP69++P+/fvq+RZ3eGPBhydToeYmBgsXLhQolc1x3TOigmTKHNxccG2bdsQGhoqzLaMjIKMeRZKZi2epKSkBAsWLMDBgwfNr4ptQevxFhkLE0q1Q82siIx+skc48yIILy+vp74aatiwITw8PFTwqO5x5MgREBF69+6N//7v/7Y4/dXR0REBAQFo1qyZih5WjydX4ej1enh7e+Oll14S/kyJzigAsMiMiUDJrMUfCQsl0HK8lc4gVYZS7VArKyKrn+wRFi+CWLRoEebMmYOtW7eiSZMmAIDCwkLMmzcPixcvVtm7usGrr74KALhy5Qr8/f2h1+tV9sg2Jk6cqIpdpQdQGSl40eJChrDQSrxlCL2nIeOLX0mRp1Y/2SssXgTxl7/8BdnZ2WjRogVatGgBAMjPz4eTkxNu3LiBTZs2mX/23LlzarlZJwgICMCdO3dw6tQpXL9+HY8ePbK4P2HCBJU8qxqXLl3CkiVLsGnTJri7u1vcKyoqwp///Gf813/9F1q1amWzLRkDqKx5Nb9FaXEhUlhoLd4yhJ4aX/xKiyM1M232CM95EUR1BmHTngGMGL766iuMHz8excXFcHd3txjkdDodbt++raJ3f8w777yDRo0aYfXq1U+9HxUVhbt37+Ivf/mLzbYSExMtPsscQO1hCbAMYVFX4q0kotuh5vwjphIk7eTLMKoRHBxMM2fOpPv376vtSo1o06YNnTp1qtL7Z86coTZt2kj0SAw5OTnUoEEDm+q4ePEijRkzhoqKiqzu3blzh8aOHWs+26omTJ06lebNm1fp/cjISJo2bVqN6yfSTrxFx0Imvz1ENCEhgZKSkujgwYN0+/Ztm+vWUj/JxL4nATBMFfj1118xY8YMuLi4qO1KjcjPz//dJd2NGze2eVfaS5cuYezYsbh7967VvaKiIowbNw6XL1+2ycbvoVQKfs2aNfD397fKigCPJ8v7+/tjzZo1Na7/6NGjGDVqVKX3R48ejW+//bbG9QPaibfoWADyntuJEydaXG+++Sb69++vSFZHRj9pERYvgtDr9ahXr16lFyOPfv364cyZM2q7UWMaNmyInJycSu9nZ2c/deCrDjIHUA8PD3h6epovDw8PuLm5IT4+3mYbosWFDGGhlXjLEHqi2yFDHMnoJy3CE3YFIWNSIlM1Bg4ciHnz5uHnn39GSEiI1T4itf199SuvvIJPPvkEvXv3fur9uLg49OzZ0yYbR48e/d2JjaNHj8a4ceNssmFC5MRE0eLCJCwCAgKeel8JYaGVeMsQeqLbUVVxZMv8Ixn9pEnUfm9V1/j8888pNDRUbTfqFDqdrtJLr9er7d4fcu7cOXJycqIRI0bQyZMn6c6dO3Tnzh1KT0+n4cOHk5OTE509e9YmGwaDgXJzcyu9n5ubS87OzjbZkIGvry+lpqZWev+bb74hX1/fGtc/atQoGjp0aKX3Q0NDaeTIkTWun0g78RYdCyLx7ZAx/0hGP2kRFi+SUWJSIlP3+Oqrr8jb25v0er3F5e3tTV9++aXN9csYQGVMTBQtLmQICyJtxFuG0BPdDhkiT0Y/aREWLxJ58OABzZw50y5WCjC1jwcPHtDu3btp9erVtGrVKtqzZ49iK6hkDKAyVurIEBeihYUJe4+3jFiIbocMkSdLEGsN3udFELwvgPrExcVV6edmzJgh2BO5hISE4MCBA/D396/y/3P+/Hl069YNgwYNQmRkJNq2bQsA+OWXX7B69WqkpKTg+PHjeP7552vsV9u2bbFt2zZ06dLlqffPnj2LcePG2Xwu0P79+zF58mTcunXLotzLywufffaZIr97JSUl+Prrr5GdnQ0iQps2bfD666+rsqKttsYbEB8L0e0YPXo0ysvLreYwmhgyZAgcHR3xxRdf1LgNgJxnVmuweBGEVjZ/smdatmz5hz+j0+mELgFWAzc3N2RmZlZ7ozTRA6izszN++eWXSie75uXl4ZlnnsGDBw9ssgPUHnFRE2FRXWprvE2IjoXIdsgSeUDteWbtBRYvDKMxavplBogdQJs0aYLk5ORKV9GkpqZi/PjxKCwstNlWVREtLmyJhQwbtekL05ZYiGxHbcuKyBDE9gAvlVaYmzdv4v79+xZ/Xf70009Yu3Yt7t+/j6FDhyq25JRRFh4UHmdHhg0b9oc/V5O+krEEuLrk5uaivLxcqs3ahMh4VxdbYiGyHYMGDUJeXl6tEXl1/Zk1weJFYaZPn45mzZph3bp1AIDr16+jZ8+eaNasGYKCgvDWW2/BaDTizTffVNlT5kl4UKg6NemrBQsWoFu3bhg5cuRTU/CHDh3C8ePHRbjL2IhWfjdq2o7aJPKYx7B4UZj09HQkJCSYPyclJcHT0xMZGRlwcHDA2rVr8emnn7J4YeocnTp1wq5duzB58mSrCZBeXl7YuXOnInMHGEYttCLy7AEWLwpTWFiIwMBA8+dvv/0Ww4cPh4PD464ODQ3FypUrVfKOYdSltqXgGYaxT1i8KIy7uzvu3LljnvNy6tQpTJkyxXxfp9Ph4cOHarnH1AG8vb2tjkCoTXAKXllqe7wZRgR8MKPCdO3aFXFxcXj06BF27dqFe/fuWUxQvHjxIg/GjFBu3LihidS1FlLwMoSFVuLNMNWBMy8Ks3z5cvTp0wfbtm1DRUUFPvjgA4t9XbZv345XX31VRQ8ZhjEhWlywsKg6nEGqGtxPj2HxojAdO3ZEVlYW0tLS0KRJE7z00ksW98eMGYP27dur5B3ze/CgUHW00lcsLqqGVjJIWnhu+Zl9DIsXATRu3BhDhgx56r2BAwdK9oapKjwoVB3uq7qFVuItuh1aEEf2AosXgaSmpiI1NRXXr1/Ho0ePLO7Fx8er5BXDMAwjAq2IPHuAxYsgYmJisGzZMnTu3BlNmza1OKSRYRiGYZiaw+JFEBs3bkRCQgJvRscoRlJSEsLCwuDk5GRRXlZWhu3bt2PChAkAgE2bNsHX11cNFxWlrqfg61q8GaY68FJpQZSVleHll19W2w1GQ0yaNAlFRUVW5ffu3cOkSZPMn8eNG4cGDRrIdE0ItTkFn5SU9NT9msrKypCUlGT+bIuwqGvxZpjqwOJFEG+//TaSk5PVdoPREET01NePV69eRcOGDVXwqPYiWlzIEBZaibcMoacFuJ+qh46ISG0ntMKcOXPM/3706BESExPRsWNHdOzY0Sr9/dFHH8l2r85S1fR7cnIyhgwZUuv+iu3UqRN0Oh0yMzPRoUMH81ETAGA0GnHlyhX0798fO3futNlWbeorNzc3ZGZmolWrVtX+f+vVq4eCggL4+PhYlN+6dQs+Pj4wGo02+abX63Ht2jV4e3tblGdmZqJXr164fft2jevWWrxFxwKoPc9tbX5mtQaLFwXp1atXlX5Op9Ph22+/FewNY8LeB4WYmBjzfyMiIuDq6mq+5+joiMDAQIwYMQKOjo4226pNfWXLF4EocSFDWGgt3iKFngnR7ZAhjmT0k5bgCbsKcuTIEbVdYJ6Cvaffly5dCgAIDAxEWFgYDAaDMFv23lcmcaHT6dCnT59KxUVNGTp0KAAgIyMD/fr1q1RY2IJW4i06Fr9F9HM7adIk9O/f30ocmV4TmsTLuHHjql23zH7SEixeBFFUVASj0QhPT0+L8tu3b8PBwQHu7u4qeVZ30NqgMHHiRGF1a6WvRIsLmcLC3uMtQ+jJem5FiiMZ/aRFWLwIYsyYMRg8eDDeffddi/KdO3di3759OHDggEqe1R20NigYjUZ8/PHH2LlzJ/Lz81FWVmZx35a0ssy+ErkEWJa4ECksTNh7vGXEQnQ7ZIgjmYJYS/CcF0F4enoiLS0NzzzzjEX5L7/8gu7du+PWrVsqeVb3SExM1MSgsGTJEnz22WeIiIjAokWLsHDhQuTm5mLv3r1YsmQJZsyYYbMNGX1Vm+bV1BSRwsKEVuItA1HtkDn/iKkmxAjBxcWFLly4YFV+4cIFcnZ2VsEjxt5p1aoV7d+/n4iIXF1dKTs7m4iINmzYQGPHjlXTtWqh0+no+vXrVuUZGRnk4eGhiI2Kigpas2YNdenShXx9fcnDw8PispXFixdT06ZNae3atWQwGGj58uU0ZcoU8vLyog0bNijQAu3EW3QsZJCQkEAlJSVCbWihn2TC4kUQr732Gr3//vtW5e+++y716NFDBY/qLloZFFxcXCgvL4+IiJo0aUJnz54lIqKcnBxyd3dXxIbIvnruueeoU6dOpNfrKSQkhDp16mS+OnbsSG5ubjRq1ChF2iFaXMgQFvYebxMyhJ4Wfsdl9JOWYPEiiGPHjpHBYKCePXtSdHQ0RUdHU8+ePclgMND333+vtnt1Cq0MCm3atKH09HQiIurevTutXLmSiIi2b99O3t7eitgQ2Vem3wOdTkdz5841f46OjqYVK1ZQcnIyPXz4UJF2iBYXMoSFvcfbhAyhJ7odMsSRVjJtsmDxIpDz58/T2LFjqX379vTCCy/QpEmT6OLFi2q7VefQyqAQFRVFH374IRE9/gJzcHCg1q1bk6OjI0VFRSliQ0ZfyUjBixYXMoSFVuItQ+iJbocMkSejn7QEixdG82h1UDhx4gStW7eO9u3bp1idWukr0eJChrB4EnuNtwyhJ7odMkSejH7SEny2kUBycnKwaNEijBs3DtevXwcAHDx4ED/99JPKntUt/Pz8UFBQAAAICgrC4cOHAQCnT5+2Wq5bm1m5ciXi4+PNn7t27Yo5c+bgxo0bWLVqlSI2ZPSV0WjE2rVr8eKLL6JJkybw9PS0uJRg2LBhSE1NBQBMnz4dixcvRnBwMCZMmIDJkyfbXH9sbCw++OADAEBYWBh++OEH/PnPf8auXbsQGxtrc/2AduItOhaA+HYUFhYiJCQEAODq6mo+12rQoEFISUmxuX5ATj9pCrXVk1b57rvvyNnZmfr27UuOjo6Uk5NDREQrV66kESNGqOxd3UKNv5JFEBAQQGlpaVbl6enpFBgYqIgNGX2lxhwkpbMWK1asoM2bN1uVb968mWJjYxWxoZV4P4mIDJLodqiRFRHRT1qCxYsgunbtSuvWrSOix2lGk3g5efIkNW/eXE3X6jz2Oig4OTnR5cuXrcpzcnLIyclJiE0RfSUjBS9aXMgQFlqJtwyh9yRKt0OGyFOjn+wZFi+CaNCggXng+a14uXLlirCBh9E2rVu3pq1bt1qVJyUlUcuWLRWxIWMAlTHPQrS4kCEstBJvGUJP9he/CJEno5+0BM95EUSjRo3M72B/y/nz59G8eXMVPKq7PDl3wER8fLxicwdkMHXqVMyaNQtbtmxBXl4e8vLyEB8fj9mzZ2Pq1KmK2Ni0aRPatWtnVd6hQwds3LhRERsy5lkUFhaiadOmVuXe3t5P/b2sLv7+/khLS7MqT0tLQ7NmzWyuH9BOvEXHAhDfDhnzj2T0k6ZQWz1pjaNHj1JZWRlFRERQjx49qKCggNzc3OjSpUt07NgxatWqFUVHR6vtZp1CK3/RPHr0iCIjI8lgMJBerye9Xk8uLi4UExOjmA0ZGQUZKXjRWYtVq1aRl5cXxcfHU25uLuXm5tLmzZvJy8uLVqxYYXP9RNqJt4wMkuh2yBhDZPSTlmDxojB6vZ6uXbtGDx8+pLfffpscHBxIp9NR/fr1Sa/XU3h4OFVUVKjtZp1CjbkDIrl37x6dOnWKfvzxRyotLVW0bjUGUBEpeNHiQoawMGHv8ZYh9ES3Q8YYIqOftASLF4XR6XR07do18+e8vDxKSUmhHTt28AZ1KsF/0VQdGQOojPkJssSFSGEhA61kkES3Q8YYIlMQawEWLwpT2aFzjHrwXzRVR8YAKvM1nr2LC9FoJYMkuh0yxxB+ZquGjohI7Xk3WkKv1+ONN974w4mHu3fvluQRQ0SYP38+4uLiUFZWBgAwGAyIiorCkiVLVPaudlJcXIysrCw4OzsjODhY0c38DAYDsrKy0LJlS4vyy5cvo3379igtLVXMFlM1RMZbJqLawWNI7YPFi8Lo9XqMHj0azs7Ov/tzW7ZskeQRY0IrA7S9ExwcjKVLlyI8PNyifOvWrVi6dCkuX76skmcM8/vwGFJ7cFDbAS0SFxcHHx8ftd1gnsDV1RVdunRR2406j2kJcHl5OXr37g0ASE1NRWRkJCIiIlT2jmEqh8eQ2gOLF4XR6XRqu8AwtZp58+bh1q1bePfdd61S8AsWLFDZO4Zh7AF+baQwer0ehYWFnHlhmD+AU/AMw9QU3mFXYY4cOVKtk3FDQkLwz3/+U6BHDFM7MaXgn332WRYuDMNUC868qIybmxsyMzPRqlUrtV1hGIZhGLuAMy8MwzAMw9gVLF4YhmEYhrErWLwwDMMwDGNXsHhhGIZhGMauYPHCMAzDMIxdweJFZby9vVG/fn213WAYhmEYu4HFi8rcuHED5eXlarvBMAzDMHYDixeGYRiGYewKFi8MwzAMw9gVLF4YhmEYhrErWLwwDMMwDGNXsHhhGIZhGMauYPEiiKSkJDx8+NCqvKysDElJSebPmzZtgq+vr0zXGIZhGMau4VOlBVGvXj0UFBTAx8fHovzWrVvw8fGB0WhUyTOGYRiGsW848yIIIoJOp7Mqv3r1Kho2bKiCRwzDMAyjDRzUdkBrdOrUCTqdDjqdDn369IGDw7+72Gg04sqVK+jfv7+KHjIMwzCMfcPiRWGGDh0KAMjIyEC/fv3g6upqvufo6IjAwECMGDFCJe8YhmEYxv7hOS+CSExMRFhYGAwGg9quMAzDMIymYPHCMAzDMIxdwa+NBGE0GvHxxx9j586dyM/PR1lZmcX927dvq+QZwzAMw9g3vNpIEDExMfjoo48QFhaGoqIizJkzB8OHD4der0d0dLTa7jEMwzCM3cKvjQQRFBSEuLg4DBw4EG5ubsjIyDCXpaenIzk5WW0XGYZhGMYu4cyLIAoLCxESEgIAcHV1RVFREQBg0KBBSElJUdM1hmEYhrFrWLwIws/PDwUFBQAeZ2EOHz4MADh9+jScnJzUdI1hGIZh7BoWL4IYNmwYUlNTAQDTp0/H4sWLERwcjAkTJmDy5Mkqe8cwDMMw9gvPeZFEeno6jh8/juDgYAwePFhtdxiGYRjGbmHxwjAMwzCMXcGvjQSxcuVKxMfHW5XHx8dj1apVKnjEMAzDMNqAxYsgNm3ahHbt2lmVd+jQARs3blTBI4ZhGIbRBixeBFFYWIimTZtalXt7e5tXITEMwzAMU31YvAjC398faWlpVuVpaWlo1qyZCh4xDMMwjDbgs40EMXXqVMyaNQvl5eXo3bs3ACA1NRWRkZGIiIhQ2TuGYRiGsV94tZEgiAjz589HXFyc+VBGg8GAqKgoLFmyRGXvGIZhGMZ+YfEimOLiYmRlZcHZ2RnBwcG8uy7DMAzD2AiLF4ZhGIZh7AqesMswDMMwjF3B4oVhGIZhGLuCxQvDMAzDMHYFixeGYRiGYewKFi8MwzAMw9gVLF4YhmEYhrErWLwwDMMwDGNXsHhhGIZhGMau+H+/2hPddrLoYgAAAABJRU5ErkJggg==",
"text/plain": [
"
"
],
"text/plain": [
" mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk \\\n",
"intercept -0.288 0.438 -1.101 0.542 0.008 0.007 2776.0 \n",
"betas[0] 0.345 0.487 -0.564 1.270 0.008 0.007 4078.0 \n",
"betas[1] -0.544 0.733 -1.884 0.875 0.012 0.011 3709.0 \n",
"betas[2] -0.066 0.457 -0.935 0.788 0.007 0.007 4514.0 \n",
"betas[3] -0.838 0.554 -1.978 0.110 0.009 0.007 3821.0 \n",
"betas[4] -0.381 0.634 -1.627 0.768 0.009 0.009 4762.0 \n",
"betas[5] 1.041 0.618 -0.081 2.221 0.014 0.010 2181.0 \n",
"betas[6] -0.527 0.751 -1.927 0.908 0.012 0.011 3877.0 \n",
"betas[7] -0.058 0.688 -1.452 1.156 0.010 0.011 4470.0 \n",
"betas[8] -0.581 0.590 -1.675 0.533 0.010 0.008 3326.0 \n",
"betas[9] -0.242 0.628 -1.407 0.969 0.009 0.010 5203.0 \n",
"betas[10] 0.250 0.626 -0.921 1.442 0.008 0.011 6243.0 \n",
"betas[11] -0.174 0.596 -1.304 0.934 0.008 0.009 5396.0 \n",
"betas[12] -0.254 0.556 -1.341 0.760 0.008 0.008 4633.0 \n",
"betas[13] -0.555 0.563 -1.572 0.517 0.010 0.008 3570.0 \n",
"betas[14] 0.069 0.605 -1.032 1.308 0.009 0.010 4284.0 \n",
"betas[15] 0.511 0.619 -0.663 1.683 0.009 0.009 4406.0 \n",
"betas[16] -0.596 0.588 -1.736 0.443 0.010 0.008 3500.0 \n",
"betas[17] 0.978 0.645 -0.129 2.278 0.013 0.009 2661.0 \n",
"betas[18] 0.215 0.381 -0.521 0.927 0.007 0.005 3335.0 \n",
"betas[19] -1.345 0.328 -1.953 -0.729 0.006 0.004 2985.0 \n",
"sigma 0.828 0.234 0.439 1.262 0.007 0.005 1155.0 \n",
"\n",
" ess_tail r_hat \n",
"intercept 2395.0 1.0 \n",
"betas[0] 2611.0 1.0 \n",
"betas[1] 2799.0 1.0 \n",
"betas[2] 2947.0 1.0 \n",
"betas[3] 3307.0 1.0 \n",
"betas[4] 3000.0 1.0 \n",
"betas[5] 2661.0 1.0 \n",
"betas[6] 2795.0 1.0 \n",
"betas[7] 2692.0 1.0 \n",
"betas[8] 3316.0 1.0 \n",
"betas[9] 2794.0 1.0 \n",
"betas[10] 2790.0 1.0 \n",
"betas[11] 3216.0 1.0 \n",
"betas[12] 2792.0 1.0 \n",
"betas[13] 2551.0 1.0 \n",
"betas[14] 2719.0 1.0 \n",
"betas[15] 2800.0 1.0 \n",
"betas[16] 2826.0 1.0 \n",
"betas[17] 3099.0 1.0 \n",
"betas[18] 2299.0 1.0 \n",
"betas[19] 2600.0 1.0 \n",
"sigma 1620.0 1.0 "
]
},
"execution_count": 275,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pymc as pm\n",
"import arviz as az\n",
"import seaborn as sns\n",
"\n",
"# Build the model\n",
"n_mcmc_samples = 1000\n",
"coords = dict(var_names=column_names)\n",
"with pm.Model(coords=coords) as logistic_model:\n",
" # Priors for weights and intercept\n",
" sigma = pm.HalfCauchy('sigma', beta=1)\n",
" intercept = pm.Normal('intercept', mu=0, sigma=sigma)\n",
" betas = pm.Normal('betas', mu=0, sigma=sigma, shape=X_train_processed.shape[1])\n",
" \n",
" # Linear predictor\n",
" mu = pm.math.dot(X_train_processed, betas) + intercept\n",
" \n",
" # Likelihood (observed outcome)\n",
" theta = pm.math.sigmoid(mu)\n",
" y_obs = pm.Bernoulli('y_obs', p=theta, observed=y_train)\n",
" \n",
" # Sample from posterior\n",
" trace = pm.sample(n_mcmc_samples, tune=1000, return_inferencedata=True)\n",
"az.summary(trace)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"No warnings, all rhats are equal to 1, the ESS are all very large, no red flags of divergences. the MCMC chains pass all diagnostics. To intepret the coefficients, we should check the HDI of the coefficients, if they contain 0 it means that 0 is included in the 94% credible interval: therefore the coefficient is not statistically different from 0:"
]
},
{
"cell_type": "code",
"execution_count": 276,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAS8CAYAAABpBEUpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADEm0lEQVR4nOzdeXwU9f3H8feSbCAH5lRArSQ00WIDrNytcsolqIFiS7wqqdpWS9WfUqpyJCggeKFSUVurUCqitQU8kBCIICqXgFRAW9TEsyCEoCQBsiH7+4PJkiUJOfaY2d3X8/Hgwe7s7Hc+O5mdfPKd72e+NpfL5RIAAADUyuwAAAAArILECAAAwEBiBAAAYCAxAgAAMJAYAQAAGEiMAAAADCRGAAAABhIjAAAAA4kRAACAgcQIQMB8+eWXmjBhgn74wx+qdevWSklJ0fDhw/XGG280q5358+fLZrPJZrPppptuanE8W7du1c9//nO1a9dObdq0UVpamn7/+9/r22+/bfA9jz/+uNLT09W6dWtlZGToySefbHDdr7/+WvHx8Ro2bFiLY6z5nGvXrj3teqmpqbLZbFqwYIHH8gULFrjbqPkXFRWllJQUXXjhhbrmmmv05z//Wd9//32Dba9du9b9XiDUkRgBCIgtW7bI4XDoySef1JEjR3TZZZepc+fOeuutt3T55ZcrNze3Se189tlnmjRpkte/pF955RX17dtXr7zyijp27KisrCy1atVKf/rTn9S1a1d98skndd7zpz/9SXfccYcqKio0atQolZWVacKECXrkkUfq3caECRNUVVWlp59+2qtYfSE2NlY33HCDbrjhBmVnZ+viiy9WRESEXnrpJf3mN7/R2WefrSeeeELMEoWw5wIAPzty5IjrBz/4gUuSa9y4ca6Kigr3a5s3b3YlJye7JLlWrVp12naOHz/u6tevnysuLs51ww03uCS5brzxxmbH8/XXX7tiYmJcklzPPPOMe3lVVZXruuuuc0ly9erVy1VdXe3xWkpKiislJcW1f/9+l8vlcu3bt8+VlJTkSkhIcFVWVnps41//+pdLkuvBBx9sdny1SXJJcr311lunXa9jx44uSa7nn3/eY/nzzz/vkuTq2LFjve/75ptvXHfccYfLZrO5JLn+8Ic/1FnnrbfecscBhDp6jAD43dKlS/Xll18qISFBTz/9tKKjo92v9erVS9OmTZMk3Xfffadt5/HHH9f69es1Z84cpaamtjiexx57TBUVFRoyZIh+/etfu5dHREToqaeeUnx8vLZs2aJVq1a5XysuLtaBAwc0ZswYpaSkSJLOOuss/exnP9OhQ4f00Ucfudc9fPiwfv/738vhcOj//u//WhxnIHTo0EFz587Vn/70J0nSQw89pPXr15scFWAeEiMAfrdlyxZJUo8ePZSQkFDn9SFDhkiS3n33Xe3du7feNv7zn/9o8uTJGjBggG655Rav4lm6dKkk6ZprrqnzWlxcnK688kpJ0r/+9S/38pKSEklSUlKSx/rJycmSpLKyMveye+65R3v37tVf/vIXRUZGehVroNx6663q1auXJOnBBx80ORrAPCRGAPyuJmmoSSJOVdMD43K5tG3btjqvHz9+XDfccINsNpv++te/ejW+6PDhw+7xQz179qx3nZrl27dvdy+r6aGq3TNU+/k555wjSdq4caOeeuop3XbbbQ22b1XXXXedpBODrauqqkyOBjAHiREAvzvrrLMknRg4XZ/ay4uKiuq8/tBDD2nTpk2aOXOmfvjDH3oVS3FxsfvxeeedV+86P/jBD+rEctZZZ+knP/mJ3njjDS1ZskSHDx/Wiy++qDfeeENdu3ZVx44d5XQ69etf/1o/+MEPdP/993sVpxl69Ogh6UQi+/nnn5scDWAOEiMAfjd48GBJJ8rja/fC1KhdtXVq2fjOnTuVm5urn/70p7rtttu8juXw4cPux7GxsfWuExcXV28sTzzxhKKjo3X11VfrjDPO0DXXXKPY2Fj95S9/kSQ9/PDD+vDDD/XUU095tH3kyBGvq70GDRpUp+y+9j9fJDI1PXfSyUuHQLgJjovfAILa4MGD1b9/f7399tu68sorNX/+fPXv318lJSWaP3++/va3v8lut8vpdKpVq5N/r1VVVemGG25Qq1at9Nxzz3m8ZoaePXtq586dWrhwob766iudd955uuGGG/SDH/xAn376qe6//35dffXVuuyyyyRJ8+bN04MPPqivvvpK0dHRGj16tObNm9fgJcXTGT58uNq3b9/g66+88orKy8tb/Nkkqbq62v2YexYhXJEYAQiIf/zjH/rZz36md9991z24ucYdd9yhd955R++//77H4OaZM2dq27ZtmjNnji644AKfxNG2bVv34/LycsXHx9dZp2ZM1BlnnFHntY4dO7qr6Gr7zW9+o+joaD322GOSTvQu3X777crKytKf/vQn7d69W3l5efrkk0+0cePGZid5d999twYOHNjg62vXrvU6MTpw4ID78amDzIFwQWIEICDOOussrV+/XqtXr1ZhYaFKSkrUrl07ZWVlqWfPnjr77LMlSV26dHG/p6Z67LXXXtOKFSs82qsZK/TGG2+4E4bG7g4tnUhsanzxxRce26vx5ZdfSlKTbwmwcOFCrVmzRs8995x7PNXs2bPVsWNHvfLKK4qMjFRWVpa+++47zZkzR6tXr/bqbtj+UjPwvW3btl7dDgEIZiRGAALGZrNp6NChGjp0qMfyTz/9VP/73/+UnJys7t2713nfO++802Cbe/fubbDEvz5nnHGG0tPT9cknn+j999+vNzF6//33JaneWE514MAB3XXXXRo0aJBycnIkSfv27dP//vc/XXXVVR7l+pdcconmzJmjDz74wJKJ0QsvvCDpxKXPiIgIk6MBzMHgawCme/jhhyVJv/71rxUVFeVe/sEHH8jlctX7r2YKkRtvvNG9rKnGjBkjSVq8eHGd18rKyvTaa69Jkn72s5812tadd96p8vJyPfPMM+5lNeNzTr20VfPciuN35s+f777f1KRJk0yOBjAPiRGAgNi9e3edKq+qqirNmjVLzzzzjNLT0zV58mSfbW/p0qX60Y9+pEsvvbTOa3fccYdiYmK0evVqd0WZdOJ+SbfeeqsOHTqkXr16Ndqrs3r1ai1atEhTp05VRkaGe/lZZ52lc889V2+99ZY+/fRTd9vPPfecpKb1RAXK3r17deedd2rChAmSTtyc8qc//anJUQHm4VIagID485//rGeeeUY9evTQOeeco2PHjmnjxo3at2+f0tPTVVBQ0GD5fEt89913+s9//qOjR4/Wee3ss8/WggULdPXVV+vXv/61/vrXvyo1NVVbtmzRZ599pnbt2mnx4sWn7dk5cuSIfvvb36pLly76wx/+UOf1qVOn6je/+Y169uypQYMG6b///a927dqliy++2H37gkA6cOCAxo8fL+lE9dnhw4f16aefateuXaqurlZcXJweeOAB/e53vwt4bICVkBgBCIiRI0equLhY27Zt0/vvv6/WrVvrggsu0F133aUJEyZ4zJ8WCD//+c/VqVMnzZo1S+vXr9f27dvVoUMH/e53v9PUqVPVrl27077/vvvuU1FRkd577z3Z7fY6r9dcFnz44Yf1+uuvKyEhQb/5zW80Z84cUy6llZeXa+HChZIku92utm3bql27dvrFL36hQYMGKTs7u94qPCDc2Fze3nUMAAAgRDDGCAAAwEBiBAAAYCAxAgAAMJAYAQAAGEiMAAAADCRGAAAABu5jFERcLpcOHz5sdhgAAASttm3bnvZeYiRGQeTw4cOKj483OwwAAILWd999d9qbmXKDxyBixR4jp9OpVatWadiwYfXe/Re+xz4PsPJy6eyzJUnOzz+XPSHB3HjCCMd64IXDPqfHKITYbDbL3bLf6XQqJiZGZ5xxRsh+iayGfR5gERHuh84zzpDdYt/BUMaxHnjscwZfAwAAuJEYAQAAGEiMAAAADCRGAAAABhIjAAAAA4kRAACAgcQIAADAQGIEAABgIDECAAAwkBgBAAAYSIwAAAAMzJUGIOjt2XdYxSUVSk2OUUa7tmaHAyCIkRgB8KuSsmN+a7u0olKTl+7UpqKD7mV90pI0c0ymEmOifLOR8mNK9k1LAIIAiREQABWVVT5ry+ms0rHjJ9q0u2w+a9dfesxY7be2W9mktm3sevKa7uqVlqgtRaW6d+mHGjb3bVW7fLON6Mqj+sh4XFFZJbsPf5b+FhPFKR5oLr41QABcOC3fxy1GatLmQh+3GXyqXdKsMV00qmsHSdKorh3kkksTFm/3y/b6zl6nI1Ft/NK2PxTPHmV2CEDQYfA1gKDWKy3R43nvtCSTIgEQCugxAgJg933DfdaW0+lUfv4qDR8+THa73Wft+ovve8s8bSkqdfcYSdLmWuONfG3j3QNkT0jwW/sAzNfsxKi4uFhpaWm64YYbtGDBAj+EBIQeX471cNpcah1xok273fp/22ydMsRvbd/6wjZNXb5TLrnUOy1Jm4sOatryXeqTlqT513b3zUbKy6W5Jx7GREXKzrgdIKSZciktLy9PNptNa9euNWPzprLZbBo4cKDZYQAB4c+KNEmaNOICVbtOjCnqPXONJizermqXS5NGXOCX7R0sr/RLuwCso9l/+pxzzjn66KOPFB8f7494gLDV1Mq1YKpK82dFmnSyKm3KqM5KiLHrUIVT8wo/0c+f3uCXqrSBj6zX1tlZvmk4AKhKA5qv2d8au92uH/3oR/6IBQhrzRuLQ1WaVLcqTZLax7fxW1Wa5P8xU75EVRrQfM2+lFZcXCybzabx48e7lw0cOFA2m01Op1N5eXlKTU1V69atdf7552v+/Pke7x84cKCmT58uSRo0aJBsNptsNptSU1M91vv222/1f//3f0pPT1fr1q2VkpKisWPHaufOnXViSk1NVWpqqg4dOqQJEyboBz/4gSIjIz3GQO3YsUPXXnutzj33XLVu3VodOnTQiBEj9Nprr9Vpb/ny5br00kuVmJioNm3aKDMzUw8//LCOHz/usd6CBQtks9m0YMECLV++XL1791ZMTIzOPPNM/epXv9K+ffvc665du1Y224m/7tetW+f+3DXvB9AyVKUB8CWf9rNeffXV2rx5sy677DJFRETo5Zdf1u9+9zvZ7XbdfPPNkuROqNatW6cbbrjBnRAl1Kr0+PTTTzVw4EB99dVXGjZsmEaPHq1vv/1W//znP5Wfn681a9aoT58+Hts+duyYBg8erLKyMl155ZWKjIxUu3btJEn//Oc/dc0118jlcumKK67QBRdcoG+//VabNm3SX//6V11xxRXudu655x7Nnj1b55xzjn72s58pPj5e69ev1x/+8Adt2rRJ//jHP+p87pq4rrrqKg0ZMkQbN27U888/r/Xr12vz5s1KTExUamqqcnNzNX36dHXs2NEjsXQ4HN7vfAS9plauBVNVWiB6VwJZlSb5tsIQgPX4NDH66quvtHPnTp1xxhmSpNtvv12ZmZl65JFHPBKj4uJirVu3TuPHj693IPIvf/lL/e9//9PKlSs1fPjJk9CUKVPUs2dP3Xzzzfr3v//t8Z69e/eqW7duevfddxUdHe1evm/fPt1www2y2+1av369Lrroojox1ygoKNDs2bM1fPhw/fOf/1RsbKwkyeVy6dZbb9XTTz+tf/7znxo7dqxHG6+//nqdWGsSrGnTpmnevHlKTU1VXl6epk+f7n7cEk6ns0Xv85eaeKwWVzCyN3W4kFGVZre5ZLf5aCCNn2y8e6Bf279tyY56q9J6pybqiexuPtmGrVZV2urb+lp+n9cW7N9Lzi+BF+r7vCl/TPo0MXrggQfcSZEkXXDBBbr44ou1bt06HT58WG3bNj654/bt2/Xee+/pV7/6lUeiIUnnn3++br75Zj366KPauXOnMjMzPV5/8MEHPZIiSVq4cKHKy8s1bdq0OkmRJJ177rnux3/6058kSX/+85/dSZF0opJs9uzZeuaZZ/Tiiy/WSYyGDBlSJ9bJkyfr6aef1t/+9jc9/vjjatXKNwWAK1as8Ek7vlZQUGB2CGHH6vu8LADn1Z/GSru+jvQYUxRrl34aW6E1q30z8Dvi6FFlG4/Xv/OOjrdpozhrd9SFHKsf66EoVPd5VlbjxRM+TYx69OhRZ1lN4nHo0KEmJUYbN26UdKKnp75elY8//tj9f+3EqE2bNurSpUud9Tdv3ixJGjZsWJO2HRsbq+eee67e16Ojo93br61fv351lsXFxcnhcGjt2rX67LPPlJ6e3uj2m2LkyJE+acdXnE6nCgoKNHToUMtf1rG65lSlFRYWavDgwZa+j1G3+/0/ONxdlTYs3aMq7Ynd8mFVWqQ7MZq+LVJHoiK1Y+pg3zQeQMFYocb5JfDY5z5OjGr3Frk3EHliE6cOXG7IwYMnxge88cYbeuONNxpcr7y83OP5WWed5R7cXNt3330n6cRtBpqy7aqqKvfg8KZsV5J7LFNDy2ti8AWrHqh2u92ysQWLblNXNWPtSGnz236LJViYUZUmBSbp87VgrlDj/BJ44bzPLTdXWk1yNW/ePLlcrgb/3XDDDR7vqy8pkk4O6v7666+btO3k5OTTbreoqKjO+2pXn9W3nHs+Af5DVRoAXzKlbzUiIkJS/b1INdVmGzZs0IQJE7zeVu/evfXKK69o1apVuvjii0+7bp8+ffTmm29qz549ysjIaPI21q9fX2dZWVmZPvjgA51xxhnq1KmTe3mrVq2a3HuG8BJqVWmBut9PoKvSJCrTgFBmSmKUlHTiL7ovv/yyzmu9e/dWnz599OKLL+rKK6/UuHHjPF6vrq7W+vXrNWDAgCZt64YbbtB9992nRx55RGPGjKlTGv/111+7L7PddtttevPNN/WrX/1Ky5YtU3Jysse6e/fuVWlpqTp37uyxfPXq1crPz/cYgD1z5kz3fZVqD7xOSkryqIQDajR1DEiwzJXmzznSPttfpi9Lj2jBu8UBnStt7V39FBkfH5TjdQA0jSnf7pobO957773atWuX4uPjlZCQ4O4hevHFFzVo0CBlZ2frscceU/fu3RUdHa0vvvhCGzZs0P79+3X06NEmbeuss87S3/72N2VnZ6t379668sordcEFF+jAgQPatGmTUlNTtWzZMknSiBEjNHXqVN1///1KT0/XiBEj1LFjR5WUlOiTTz7R+vXrNWPGjDqJ0eWXX64rrrhCV111lVJTU7Vx40a99dZb+uEPf6j77rvPY93Bgwfr5Zdf1ujRo3XRRRcpIiJCV155pbp27er9jgUswJ/zo5VWVGry0p3aVKtXKCHG7jGmqE9akmaOyazv7S2SHNfa/TgpNkr2Ws8BhB5TEqMLL7xQzz//vB555BHNmzdPx44dU8eOHd2JUVpamrZv365HH31Uy5Yt0/PPP6+IiAh16NBB/fv311VXXdWs7Y0ZM0abNm3SAw88oHXr1unVV19VSkqKHA6H+/5KNe677z71799fTzzxhNasWaNDhw4pOTlZaWlpysvL07XXXlun/bFjx+qmm27SzJkztWzZMsXExGj8+PF64IEHlJjoOf7h8ccflyQVFhbqtddeU3V1tc4991wSI7g1Vp1m9bnS/Dk/Wk0V2pPXdFevtERtKSrVvUs/lE1STRHapqKDGvKo7wam7/7jJYoxHldUVsnexOpBK6KnC2iczeVyBc/dyixmwYIFysnJ0fPPP+9xJ+tw4nQ6tWLFCo0cOdLS412CSerdDVdjQnrymu4eY4pe//c3fq1Ci648qo/mnvhjrPP/vaIjUW38ti1/C7bKNM4vgcc+t2BVGgCcDlVoAPyJflXAYhqreLJ6VZq/q9ECXYW2deoQ9+DrjXcPkL3WvI4AQg+JEWAxjY0DsXpVmj+r0W59YZv/q9BOEWM7OaYoJipSdsbpACGNb7gXxo8fH7Zji4CGJPuxauup63ro9iXbPcYU9ctI0ePZFykpNso/Gy0P3sHWAJqPxAhA0EiKjdKiG/toz77DKi6pUGpyjDLaNT4HIwA0FYkRgKCT0a4tCREAv6AqDQAAwEBiBAAAYCAxAgAAMJAYAQAAGEiMAAAADCRGAAAABhIjAAAAA4kRAACAgcQIAADAQGIEAABgIDECAAAwkBgBAAAYSIwAAAAMJEYAAAAGEiMAAAADiREAAICBxAgAAMBAYgQAAGAgMQIAADCQGAEAABhIjAAAAAwkRgAAAAYSIwAAAAOJEQAAgIHECAAAwEBiBAAAYIg0OwAAQF179h1WcUmFUpNjlNGurdnhAGGDxAgAWqCk7Jhf2i2tqNTkpTu1qeige1mftCTNHJOpxJgov2yzPslxrQO2LcBKSIwA+F1FZZXZIbRcZZVijIcVlVWyG5+lx4zVftlcK5vUto1dT17TXb3SErWlqFT3Lv1Qw+a+rWqXXzZZr933DQ/cxhrgdFbp2HFjv7tspsQQE8WvyXDDTxyA3104Ld/sEFosuvKoPjIe9529Tkei2vh1e9UuadaYLhrVtYMkaVTXDnLJpQmLt/t1u6eyzs8sUpM2F5q29eLZo0zbNszB4GsAsJheaYkez3unJZkUCRB+6DEC4HdWuCzTYuXl0twTDzfePUD2hARJ/u1R2VJU6u4xkqTNtcYbBYoVfmZOp1P5+as0fPgw2e12s8NBmCAxAuB3QT1Ow3ky9pioSNmNz7J1yhC/bO7WF7Zp6vKdcsml3mlJ2lx0UFOX7VS3c+P13PheftlmfazwM3PaXGodYex3u/nxIDz47FLa2rVrZbPZlJeX56smTbdgwQLZbDb3v+zsbK/ae/rppz3aGz9+vG8CBRAQB8srVVJ2zG8VaZI0c0ymMs6K04TF29V75hpNWLxd3x1xasdX3+nWF7aptKLSb9uuzZ+fEbCyoEnBU1NTJUnFxcUB33ZWVpYcDocyMzPrvHbs2DHNmTNHixYt0pdffqmkpCRdfvnlmjFjhs466yyPdXv27Knc3FwdOnRIjz/+eKDCB0wV1BVpkkdV2sBH1vt98HUNm6ToqAjdOfR8Xek425TqNLMvp1mhKq2GFXrQEBj8pJtg9OjR9fbuVFdXKysrS/n5+erbt6/Gjh2rPXv26Nlnn9WaNWu0ceNGnXnmme71e/bsqZ49e6q4uJjECGHDOtVNLVO7Ki2QXJIeuqqbqdVp1vjZmVuVVoPqtPBBVZoXFi5cqPz8fF199dV67733NHv2bP3zn//U/Pnz9dlnn2nKlClmhwggiFGdBgSeX3qM3nnnHU2ZMkVbt25VRESELr30Us2ZM0fp6eke63377bd64IEH9Nprr+nLL79U27ZtNWDAAE2fPt192aq4uFhpaWnu99hsJ7tTc3NzlZeXp8rKSj3zzDN6/fXXtXv3bn377beKj4/XJZdcoqlTp+qiiy7y2G51dbWee+45/fnPf9Ynn3yiI0eOKDk5WRdddJHuuusuDRw4sEmf8y9/+Ysk6YEHHvCI6ze/+Y0eeughvfDCC3rssccUHR3drP0HhBKzL8d4rVZVWqCZXZ1m9s+OqjSYweeJ0caNG/XAAw9oxIgR+v3vf69du3Zp6dKlWr9+vTZu3KhOnTpJkj799FMNHDhQX331lYYNG6bRo0fr22+/1T//+U/l5+drzZo16tOnjxISEpSbm6vHHntMknTHHXe4t1WTwBw8eFB33HGH+vXrp5EjRyoxMVGfffaZXn31Vb355pt6++231avXyWqOe+65Rw8++KB++MMf6pprrlHbtm319ddf65133tHq1aublBgdPXpUmzZt0gUXXKCOHTt6vGaz2TR06FA988wzev/999WvXz+v9mltTqfTZ235Qk08VosrlAXbPrebOzTEe7aTA3pW39ZXEUa5vr/dtmRHneq0act3qndqop7I7haQGOy2AN5quz5GVZrd5jI9lmD5vnkr2M4vzdWUBNvniVF+fr6efvpp/eY3v3Eve+aZZ/Tb3/5Wt99+u1577TVJ0i9/+Uv973//08qVKzV8+Mm/SqZMmaKePXvq5ptv1r///W8lJCQoLy9PCxYskKR6q94SExP1xRdf6JxzzvFYvmvXLvXt21f33nuvCgoK3MufffZZnX322fr3v/+tmJgYj/ccPNi0v8g+/fRTVVdXKyMjo97Xa5bv2bPHp4nRihUrfNaWL9XevwgM9nlgRBw9qsuNx+vfeUfH2wRm8PWQeOlASYTHmKJWNmn/gYN69c3Vig1wB0qciR02HOuBF6r7PCsrq9F1fJ4YnX/++br55ps9lt1888165JFH9MYbb2j//v366quv9N577+lXv/qVR1JU+/2PPvqodu7cWW8l2Klat25dJymSpB//+McaNGiQ8vPz5XQ6PTLFqKgoRURE1HlPUlLTruF/9913kqT4+Ph6Xz/jjDM81vOVkSNH+rQ9bzmdThUUFGjo0KF0dQeIVfd50FefNaS83P1w+rZIHQlgdVIrmxTXOlLX9jlPg350pkrKnLp36Yea/W9nQOdNk6QdUwcHdoM6UZVWWFiowYMHt+g+RlSSNZ9Vzy+B5POj5uKLL1arVp5julu1aqWLL75Ye/bs0Y4dO7Rnzx5J0r59++rtAfr444/d/zclMZKkDz74QA8++KDeeecd7d27t0434IEDB9Shw4lr9dnZ2Zo/f74yMzOVnZ2tQYMG6Sc/+UlQjAWy6oFqt9stG1uosto+7zZ1ldkh+IVZVWnSiXnT5ozt6jHOyIx50ySp2/1mVYZFSpvfbtE7qSRrOaudXwLJ54lRu3btTrv8u+++c1+ueuONN/TGG2802FZ5rb/UTue9997T4MEn/poZNmyYMjIyFBcXJ5vNpmXLlmnHjh06duzkzcoef/xxpaWl6fnnn9eMGTM0Y8YMtWnTRr/4xS/0yCOPKCUlpdFt1vQUNdQj9P3333usBwAtQWUaEFg+T4z27dt32uXx8fHuy0zz5s3ThAkTvN7mzJkzdezYMa1fv16XXHKJx2sbN27Ujh07PJZFRkZq4sSJmjhxor755hutW7dOzz//vP72t79p7969ys9v/N4dnTp1UqtWrdy9X6eqWd7QGCQg1JhdweQ3JlalSeZXptUw4+dLVRrM4PPE6N1331V1dbXH5bTq6mq99957stls6tatmzsx2rBhQ5MTo4iICFVW1n8r/E8//VRJSUl1kqKKigpt27bttO2effbZuvrqqzVu3DhdcMEFWr16tY4cOdLoZbXo6Gj17t1bGzdu1Oeff+5RmeZyuVRQUKDY2Fj17NmzSZ8PCHYhO56j1lxpa+/qp8gA9gLXN2/atOW71CctSfOv7R6wOCRzfr7MlQYz+PwGj//973/d9/ep8Ze//EX//e9/NWrUKJ155pnq3bu3+vTpoxdffFEvvfRSnTaqq6u1bt06j2VJSUk6cOCAjh49Wmf9jh07qrS0VLt27XIvO378uCZOnKj9+/d7rHvs2DG99957ddooLy9XWVmZ7HZ7nTFSDfn1r38t6UT5v8t1ciTkM888o88++0zXXnttUIxbAtA0SbFRSo5rHbDtzRyTqbSUGI950w5VVMp5vNrvc6Ylx7X2+AeEC5+n4MOHD9dtt92mFStW6Mc//rF27dql1157TSkpKR7TYLz44osaNGiQsrOz9dhjj6l79+6Kjo7WF198oQ0bNmj//v0eSdDgwYP1/vvv67LLLlO/fv0UFRWl/v37q3///vr973+vVatW6ZJLLtEvfvELtWnTRmvXrtXXX3+tgQMHau3ate52jhw5oosvvljnn3++evToofPOO09lZWV6/fXXtXfvXk2cOFGtWzftJHDDDTfopZde0osvvqiioiINGDBAn3zyif71r38pLS1NM2bM8Nl+BYJJSFWo1ZorraKySvbKKvWYsTpgm2+oMs3fc6ZZ4dKoP+ZKC9meTfiMz4+Qvn37asqUKZoyZYqeeOIJRUREaPTo0XrwwQfdN3eUpLS0NG3fvl2PPvqoli1bpueff14RERHq0KGD+vfvr6uuusqj3alTp6q0tFSvv/661q9fr+PHjys3N1f9+/fX5ZdfrldeeUWzZs3S3//+d8XExGjw4MFaunSp7rvvPo92YmNjNWfOHK1Zs0br16/Xt99+q8TERF1wwQV64IEHlJ2d3eTP2qpVKy1fvlyzZ8/WokWLNHfuXCUlJenGG2/UjBkzPOZJA8KJNebY8o3aVWl9Z68L2CSyNcyqTLPOz9C3c6VRqYbG+CwxGjhwoMflpNq9NA1JTEzU/fffr/vvv7/RdePi4vTnP/+5wdfHjh2rsWPH1lm+YMEC980hpRMliJMmTdKkSZMa3WZTtG7dWrm5ucrNzfVJewBwKirTgMChT7EJcnJylJOTo3HjxmnJkiUtbufpp5/WLbfc4sPIAGuywmUYn6lVlbbx7gGyJyQEvDfFjMo0K/wMqUqDGUiMTsPhcHj0BDX1ZpMN6dmzp0d7DofDq/YAqwqpcRy1qtJioiJlj4rU1ilDArZ5syrTrPAzpCoNZuBIOw2Hw+HT5KVnz56U7wMhIJBVWk9d10O3L9nuMaaoX0aKHs++SEmxUQGLAwgXJEYAYGFJsVFadGMf7dl3WMUlFUpNjlFGu7ZmhwWELBIjAAgCGe3akhABAeDzGzwCAAAEKxIjAAAAA4kRAACAgcQIAADAQGIEAABgIDECAAAwkBgBAAAYSIwAAAAMJEYAAAAGEiMAAAADiREAAICBxAgAAMBAYgQAAGAgMQIAADCQGAEAABhIjAAAAAwkRgAAAAYSIwAAAAOJEQAAgIHECAAAwEBiBAAAYCAxAgAAMJAYAQAAGEiMAAAADJFmBwAgdO3Zd1jFJRVKTY5RRru2ZocDAI0iMQJCQEnZMbND8FBaUanJS3dqU9FB97I+aUmaOSZTiTFRJkbWsOS41maHAMACSIzgMxWVVWaHEBacziodO35if9tdNklSjxmrTY7KUyub1LaNXU9e01290hK1pahU9y79UMPmvq1ql9nR1W/3fcPrf6GySjHGw4rKKtk5zpstJopfNQgeHK3wmQun5ZsdQhiJ1KTNhWYH0aBqlzRrTBeN6tpBkjSqawe55NKExdtNjqxhDR2/0ZVH9ZHxuO/sdToS1SZwQYWI4tmjzA4BaDIGXwPwi15piR7Pe6clmRQJADQdPUbwmQYvRcCnnE6n8vNXafjwYbLb7ZKs2Vu3pajU3WMkSZtrjTeyogaP3/Jyae6JhxvvHiB7QkLAYgIQeCRGjViwYIFycnLcz8eNG6clS5a0qK2VK1fqsssucz8fMGCA1q5d622IlsE4gsBw2lxqHXFif9vtJ/b51ilDTI7K060vbNPU5Tvlkku905K0ueigpi3fpQvatdWM0T9WpzPjzA6xjgaPX2ekxzp2jnMgpPENb6KsrCw5HA5lZma6l3366adatGiRtm3bpq1bt+qbb75Rx44dVVxcXG8b6enpys3NlSRNnz49EGEjBJWUV6rMeeJ/e2S12eHUa+aYTE1eutNjTFErm3SwvFI/f2ajJSvUTq3so0oNCE8kRk00evRojR8/3mPZ+vXrNX36dEVERKhz587au3fvadtIT09XXl6eJBKj06G67fT6zl4rKVKT319rciRNY5MU2zpSc8Z2DZoKNanWpTWq0nyGXmUEA45SL/Tv318bNmxQt27dFB0drTZtqFbxBSuOl0HLuSTNGds1qCrUpJPHIVVpvkN1GoIBiZEXOnXqpE6dOpkdBmB5VKgBCBYkRrAcqttOLxh71IKtQk2qdRxSlQaEFRKjION0Os0OwUNNPL6My27zWVMh6Z27Lta6des0YMAARRrl+lZ225Id9VSo7VTv1EQ9kd3N7PAaZLcZA6BsLo9ldpuFB0ZZXHPPE/44v+D0Qn2f25twziQxCjIrVqwwO4R6FRQUmB1CWImzS+vWrTM7jCYZEi8dKImoU6G2/8BBvfrmasVaILeLO00MEUeP6nLjcWFhoY4zljDgOL8EXqju86ysrEbXITEKMiNHjjQ7BA9Op1MFBQUaOnRokzLx2qg+axmns0qFhYWa/H7wfH1b2aS41pG6ts95GvSjM1VS5tS9Sz/U7H87LVGZtmPq4IZfLC93P+x7yQDZE+IDEFHoak5lmjfnF7QM+5zEKOhY9UC12+3Njq3b1FV+iiYcBNdXt9rlWZkmyVKVad3ub3jeudpVaf0eeZeqNC+1pDKtJecXeCec9zlzpQEICCrTAASD4PqzEyGF6rOWqZkrbdLm4Pr6Wrky7bTHIlVpQFgJrjMrQgp3wW2ZmrnSNt49UPbI4NiHDc2d1ictSfOv7W52eKc/FpkrDQgrfMO9cODAAU2cONH93Ol06sCBAx5Thzz88MNKSUkxITqEqpq50oJFaUWlnMerdaii0mNMUY+OCZo5JvM07wycmnnSmB8NAImRF8rKyrRw4UKPZeXl5R7L8vLySIxEBZovBdtcaa1sUts2ds27uruS4+x66+P9emHTF9r+xSENefRts8PzUO8lNeZK8yl6imF1HKFeSE1NlctlgVrjIBCMd2uGb1S7pFljurjHF/XtlKIu58ZbpiKttvqOU+ZK8y3mS4PVUZXWRDk5ObLZbMrOzm5xGytXrpTNZpPNxq2dEV6oSAMQLOgxaoTD4VBubq77eWZmy8dEpKene7SVmprqTWhBhQo03wnG3jcrV6TVVu9xSlUaEFZIjBrhcDjkcDh80lZ6erry8vJ80lawYVyB72y8e6DWrF6tS4cMCYqqNKtXpNVW73FKVRoQVviGA0EmOTZKcfYT/wfDnWmfuq6Hbl+y3WNMUb+MFD2efZGSYqNMjAwA6iIxAuBXSbFRWnRjH+3Zd1jFJRVKTY5RRru2ZocFAPUiMQIQEBnt2pIQAbA8qtIAAAAMJEYAAAAGEiMAAAADiREAAICBxAgAAMBAYgQAAGAgMQIAADCQGAEAABhIjAAAAAwkRgAAAAYSIwAAAAOJEQAAgIHECAAAwEBiBAAAYCAxAgAAMJAYAQAAGEiMAAAADCRGAAAABhIjAAAAA4kRAACAgcQIAADAQGIEAABgIDECAAAwRJodAABYwZ59h1VcUqHU5BhltGtrdjgATEJiBMDySsqO+a3t0opKTV66U5uKDrqX9UlL0swxmUqMiZLKjynZWH6wvFKRkb6NJTmutU/bA+AdEiMgSFRUVkmSnM4qHTt+4rndZTM5qsDoMWO139puZZPatrHryWu6q1daorYUlerepR9q2Ny3Ve2SoiuP6iNj3YGPrNeRqDY+3f7u+4b7tL1AiIniVwdCF0c3ECQunJZf61mkJm0uNC2WUFLtkmaN6aJRXTtIkkZ17SCXXJqweHtAtu/5cw0OxbNHmR0C4DcMvgYQ9nqlJXo8752WZFIkAMxGjxEQJGouuTidTuXnr9Lw4cNkt9tNjiow/N2rsqWo1N1jJEmba4038rdgvJQGhDISIyBI1IzrcNpcah1x4rndHh5f4a1Thvit7Vtf2Kapy3fKJZd6pyVpc9FBTVu+S33SkjT/2u5Sebk098S6a+/qp8j4eJ9un/E6gLVwKa0RCxYskM1mc//Lzs5ucVsrV670aGvgwIG+CxQIISVlxzz++UtpRaWcx6t1qKJSExZvV++ZazRh8XalpcRo5phMv21XOlGNRkUaYD38qdJEWVlZcjgcysw8cbJ0uVxauXKlXn31Vb377rv6/PPP5XQ6lZGRoXHjxunOO+9Umzae1Svp6enKzc2VJE2fPj3gnwGhI9Sr0vxZhVZbTUXavKu7KznOrrc+3q8XNn2h7V8c0pBH35bkv6q0ULuERs8XQgVHchONHj1a48ePdz8/duyYRo4cqdatW2vgwIEaPny4jh49qvz8fE2ePFnLli3T2rVrFRMT435Penq68vLyJJEYwTuTNlOV5gunVqT17ZSiLufGB6QiLRir0U6HSjWEChKjFoqIiNCMGTN06623KjHxZEWL0+nU2LFj9dprr+nJJ5/UH/7wBxOjBNAYKtIA1EZi1EJ2u12TJ0+ud/k999yj1157TevWrSMxgl882LsqpKvSAtmbYlZFWqhdSgNCBYmRH9T8soqM9P3udTqdPm/TGzXxWC2uUOZ0OtU6QrLbXLLbXGaH4xcb7x4YkO3ctmRHPRVpO3X+WXGafmVnpaXEylarKm31bX0VkZDgk22H2s/OH+cAzi+BF+r7vCl/TJIY+cFzzz0nSRo2bJjP216xYoXP2/SFgoICs0MIO+G2z8v8cJ4eEi+VHozwGFPUyiYdLHfq6me3KP0Ml67pUK5fGa+tf+cdHW/j2ylB4kKz08+nwu1Yt4JQ3edZWVmNrkNi5GNvvvmmnnnmGXXu3Fk33nijz9sfOXKkz9v0htPpVEFBgYYOHRqyl3Wsprn7vGaOtWDX7X7/Dja3SYptHak5Y7t6zJn2yM5j7sRo+rZIHfFx9dWOqYN92p5V+KJKjfNL4LHPSYx8asuWLRo3bpzi4+P1j3/8Q61b+/4eJVY9UO12u2VjC1VN3efdpq4KQDTBzyVpztiudeZM+8OCDX7drr8TPrP4skqN80vghfM+5waPPvL+++9r2LBhatWqlfLz8/XjH//Y7JAANBMVagDoMfKB999/X0OHDlV1dbVWrVqlXr16mR0S4BYq1U+BqFQzo0ItVH4+QKggMfJSTVJ0/Phx5efnq0+fPmaHBHgIlTsS+3O+NKnhOdN6pZ7sRWKuNCD08Y30wtatWzV06FBVVVVp5cqV+slPfmJ2SEDI8edcabVNGnGBblz4vkeFWkKMXf83NMOv2635fMybBlgDiVELHTx4UEOHDtWhQ4c0YsQIFRQU1ClvTEhI0B133GFOgAgboVJ11pBAz5s2ZVRnJcTYdajCqXmFn+i6Zzdrl7GOL+dKO1UwXFKjdwvhgKO8hb7//nuVlpZKklauXKmVK1fWWadjx44kRvC7UJtzyyynzpsmSe3j2/i9Kq1GMPwcmQ8N4YDEqIVSU1PlcoXWnWuBcEdVGgASoybKyclRTk6Oxo0bpyVLlrSojZUrV+qyyy7zcWQId8FwCcYb4TBvmhT6P0cgWJAYNcLhcCg3N9f9PDMzs8Vtpaene7SVmprqTWiApNAf9+HvarQaZlWl1Qj1nyMQLPgmNsLhcMjhcPikrfT0dOXl5fmkLSBcBKpa66nreuj2Jds9qtL6ZaTosSvOl24/8TwpNkp2qseAkEZiBAA6kfQsurGP9uw7rOKSCqUmxyijXVupvNzs0AAEEIkRANSS0a7tiYQIQFhirjQAAAADiREAAICBxAgAAMBAYgQAAGAgMQIAADCQGAEAABhIjAAAAAwkRgAAAAYSIwAAAAOJEQAAgIHECAAAwEBiBAAAYCAxAgAAMJAYAQAAGEiMAAAADCRGAAAABhIjAAAAA4kRAACAgcQIAADAQGIEAABgIDECAAAwkBgBAAAYSIwAAAAMkWYHAMA8e/YdVnFJhVKTY5TRrq3Z4QCA6UiMAJOUlB1r0fucVVUqc0ol5ZWyR1a3qI3SikpNXrpTm4oOupf1SUvSzDGZSoyJalGbLZUc1zqg2wOA0yExQkBUVFaZHYLl9Jix2ot3R2ry+2tb/O5WNqltG7uevKa7eqUlaktRqe5d+qGGzX1b1S4vwmqB3fcND+wGm6uySjHGw4rKKtn9cCzHRHEqBqyCbyMC4sJp+WaHgFqqXdKsMV00qmsHSdKorh3kkksTFm8PeCxWPzaiK4/qI+Nx39nrdCSqjc+3UTx7lM/bBNAyDL4GwlSvtESP573TkkyKBACsgx4jBITlL5eYwOyeki1Fpe4eI0naXGu8USBZ/tgoL5fmnni48e4BsickmBoOAP8iMUJAMIairq1ThrTofc6qKq1ZvVqXDhkie2TL9uutL2zT1OU75ZJLvdOStLnooKYt36U+aUmaf233FrXZUpY/Npwn44uJipTd6vEC8AqX0hqxYMEC2Ww297/s7OwWt7Vy5UqPtgYOHOi7QBF0kuNam1aRNWnEBap2nRhT1HvmGk1YvF3VLpcmjbjAlHgAwCr406eJsrKy5HA4lJmZ6V725ptvauHChfrggw+0d+9eVVZW6rzzztPFF1+sP/7xjzr//PM92khPT1dubq4kafr06QGN36qoVmtpdZpvqtKmjOqshBi7DlU4Na/wE/386Q1UpZ0qAFVp9bF8TxoQovjmNdHo0aM1fvx4j2UrVqzQxo0b1adPH1122WWy2+366KOPtHDhQr3wwgtasWKFBg8e7F4/PT1deXl5kkiMapg9ziZcnVqVJknt49tQlVaPQFSl1YdKNcAcJEZeeOihhzRv3rw6y9esWaMhQ4boj3/8o7Zs2WJCZEDjqEoDgLpIjLzQpk39fzleeumlSkxM1CeffBLgiIKP5S+jBIBZPSZUpTURVWlAWCEx8oMNGzaotLRUl1xyic/bdjqdPm/TGzXxtDQuu82X0QSnjXcPbNb6VU6n1q1bpwEDBijSbm/We4sOlOurg0f0t01f1FuV1js1UU9kd2tWm96y2wI8qKm5asVnt7kCFq/Vvutm8Pb8guYL9X1ub8I5k8TIB1atWqX33ntPx44d0549e/T6668rJSVFc+fO9fm2VqxY4fM2faGgoMDsECyvzMfnmXXr1jV53XKn9HJRhD75/mQmGmuXx5iijDNcGhJfoTWrvZmqpPnimpfbBVzE0aO63HhcWFio4w30FMN/OL8EXqju86ysrEbXITHygVWrVumRRx5xP09PT9eSJUvUo0cPn29r5MiRPm/TG06nUwUFBRo6dGiTMvFThVNVWrf7C03b9sm50bp4zI1mczpV0/+x53ubZu0I/Clhx9TBja9kpvJy98O+lwyQPSG+WW+nuqzlvD2/oPnY5yRGPvHwww/r4YcfVllZmXbv3q377rtPF198sZ577jldc801Pt2WVQ9Uu93eoti6TV3lh2hwKivNjXYqMxPGpqhdldbvkXebXZVGdZn3Wnp+QcuF8z7nBo8+FBcXp969e2vZsmX60Y9+pF//+tfav3+/2WEBkqhCA4CmoMfIDyIjIzVo0CDt2LFD77//vi677DKzQ7Isy1ck+ZDZ9+uxShXaqSx/DFCVBoQVEiM/+eabbyRZ99KXVYTT+IuWzo12qpbMlWaludFOZfljgLnSgLDCN9wL77//vnr27FlneX5+vpYuXaqEhAT95Cc/MSEyWJGv5kVzOlspzi4lx0Y1OfF+6roeun3Jdo8xRf0yUvR49kVKio3ySVwAEApIjLzQq1cvZWZmqmvXrjr33HNVXl6uf//731q/fr3sdruee+45xcbGmh0mTFZSdsyn7TmrqlTmlErKK2WPrG7Se0orKlVZ5bluZVW1DpYfk8tlzn2EzJpAFwBOh8TIC7NmzdJbb72ldevWaf/+/WrVqpXOO+88/frXv9Ydd9yhzp07mx2iJYRTSX59WjZJbGOaN4nsyXL97h7l+sPmvh3wSWNrWH5sUY1mTCJr+cuCABrFt9gL99xzj+655x6zw7A8swcdw5rl+sFyXDRnEllK84HgR7l+E+Xk5Mhmsyk7O7vFbaxcuVI2m002G/NgIPAo1weAxtFj1AiHw6Hc3Fz388zMzBa3lZ6e7tFWamqqN6EFjaC5ZOInVukZsVq5ftAcF5TrA2GFxKgRDodDDofDJ22lp6crLy/PJ20Fk3Afd+GrMv0aoVKuHzTHBeX6QFjhGw74ma+rryjXBwD/ITECwkBSbJQW3dhHe/YdVnFJhVKTY5TRrq3ZYQGA5ZAYAWEko11bEiIAOA2q0gAAAAwkRgAAAAYSIwAAAAOJEQAAgIHECAAAwEBiBAAAYCAxAgAAMJAYAQAAGEiMAAAADCRGAAAABhIjAAAAA4kRAACAgcQIAADAQGIEAABgIDECAAAwkBgBAAAYSIwAAAAMJEYAAAAGEiMAAAADiREAAICBxAgAAMBAYgQAAGAgMQIAADBEmh0AANRnz77DKi6pUGpyjDLatTU7HABhgsQICHMlZcfMDsFDaUWlJi/dqU1FB93L+qQlaeaYTCXGRAU+oPJjSjYeHiyvVGSk5/5Kjmsd+JgA+A2JEUJGRWWV2SEEhNNZpWPHT3xeu8vmdXs9Zqz2QVS+08omtW1j15PXdFevtERtKSrVvUs/1LC5b6vaFfh4oiuP6iPj8cBH1utIVBuP13ffNzzwQVlMTBS/ShA6OJoRMi6clm92CAEUqUmbC80Owi+qXdKsMV00qmsHSdKorh3kkksTFm83ObL6hddxV7/i2aPMDgHwGQZfA7CcXmmJHs97pyWZFAmAcEOPEUJGuFzScDqdys9fpeHDh8lut3vdnhV7PLYUlbp7jCRpc63xRlYTLscdEC5IjBAywmWcg9PmUuuIE5/Xbvf+M2+dMsQHUfnOrS9s09TlO+WSS73TkrS56KCmLd+lPmlJmn9t98AHVF4uzT3xcO1d/RQZH+/xcrgcd0C44FJaIxYsWCCbzeb+l52d3eK2Vq5c6dHWwIEDfRco0AJWq0iTpJljMpWWEqMJi7er98w1mrB4uw5VVMp5vFqlFZVmh1dHSdkxS+5HAC3DnzpNlJWVJYfDoczMzAbXKS0tVWZmpr755hsNHz5cK1eu9Hg9PT1dubm5kqTp06f7Nd5wEy4VaZJvq9KsVpFWo5VNimsdqWv7nKdBPzpTJWVO0yrTGqtKq8ElNXrPEBo4ipto9OjRGj9+/GnXmTBhgr777rsGX09PT1deXp4kEiNfs+I4Gf8K3ao06URl2pyxXT3GGVm5Mk0Kx2OwLqrTEAq4lOYj//znP7V48WLNmTPH7FCAkEBlGgAz0GPkA/v379ctt9yi66+/XqNGjdKECRPMDinshNNlDF9WpVm5lyOYKtOk8DoGgVBGYuQDv/3tbxUREaHHH3/8tJfSfMHpdPq1/eaqicfsuOze3wA6eBhVaXabS3abdwNuNt490Dcx+djNi7ZpyrIP61Sm9U5N1BPZ3QIai61WVdrq2/oqIiGh3vW8/VmEAl+fB6xyfgknob7Pm/LHJImRl/7+97/rX//6l5YtW6bExES/J0YrVqzwa/stVVBQYHYIYcfX+7zMAufBcqf0clGEPvneplY2eYwpyjjDpSHxFVqzOrADxiOOHlVNLer6d97R8Taeg6/jvL+VFBrB+SXwQnWfZ2VlNboOiZEXvvnmG9122226+uqrm7SzfWHkyJEB2U5TOZ1OFRQUaOjQoT652WBLhVtVWmFhoQYPHuyT+xjV6Ha/+YO5T86T1kW90hL16gff6NGC/+pI5XHt+d6mWTsCf8qKrox0J0bTt0XqyCmVVzumDg54TGYKZOWZVc4v4YR9TmLklZtuukl2u11PPPFEwLZp1QPVbrebGlu3qatM27Y5IqXNb5sdhM+dOk/aTf06qX18G0tXo1khoQwkMyrPzD6/hKNw3uckRi20cOFCvfnmm/rHP/6hlJQUs8MBQgbVaADMRGLUQtu3n/gL9uc//3m9r+fn58tms6lbt2764IMPAhhZeAqniiBfz5VWwyoValSjATATiVEL/eQnP1FZWVmd5WVlZXrppZd07rnnavjw4TrvvPNMiC78hNMdd309V1oNK8yZ1tA8aRe0a6sZo3+sTmfGBT4o5koDwgrf6BYaN26cxo0bV2d5cXGxXnrpJf34xz/Ws88+a0JkQMskx7U2fc6vmWMyNXnpTo8xRa1s0sHySv38mY3qk5akmWMylRgTZWKUJyXHtTY7BAA+RmKEoBdOFWmSb+dKO5WV5k6zSYptHak5Y7uqV1qithSVmjJf2unmSgvHy2j0kCHUcYQj6FllbExghfZcaZLkkud8aaO6drDcfGnheOwxHxpCHYmRj6Wmpsrl4g64gC9QoQYg0EiMmignJ0c5OTkaN26clixZ0qI2Vq5cqcsuu8zHkSHcLmf4qypNsl4PiNUr1MLt2APCAYlRIxwOh3Jzc93PMzMzW9xWenq6R1upqanehAZDuI158FdVmmSNyrQaDVWo9UlL0vxruwcukNNUpYXbsQeEA77VjXA4HHI4HD5pKz09XXl5eT5pC/AHK1VZPXVdD92+ZLvHmKJ+GSl6PPsiJcUGsCrNdnJwf1JslOwW2kcAfI/ECIAlJcVGadGNfbRn32EVl1QoNTlGGe3amh0WgBBHYgTA0jLatSUhAhAwrcwOAAAAwCpIjAAAAAwkRgAAAAYSIwAAAAOJEQAAgIHECAAAwEBiBAAAYCAxAgAAMJAYAQAAGEiMAAAADCRGAAAABhIjAAAAA4kRAACAgcQIAADAQGIEAABgIDECAAAwkBgBAAAYSIwAAAAMJEYAAAAGEiMAAAADiREAAICBxAgAAMBAYgQAAGCINDsAAABq7Nl3WMUlFUpNjlFqUhuzw0EYIjECAEiSSsqOmbbt0opKTV66U5uKDrqX9U5N1JB4qaS8UvbIatNiqy05rrXZIcDPSIwAhLWKyqrTr1BZpZha69obWz+I9Zix2rRtt7JJbdvY9eQ13dUrLVFbikp179IP9f7nkZq1Y61pcZ1q933DzQ7Br5zOKh07bhzrLluD68VEhW76ELqfDACa4MJp+ad9PbryqD4yHvedvU5Hori84w/VLmnWmC4a1bWDJGlU1w5yyaUJi7ebHJmnxo6X0BCpSZsLT7tG8exRAYol8Bh8DQCwhF5piR7Pe6clmRQJwhk9RgDCWqOXRsrLpbknHm68e4DsCQl+j8ksZveGbCkqdfcYSdLmWuONrCL0L6U5lZ+/SsOHD5Pdbjc7HFOQGAEIa42OlXCefD0mKlL2EB5bsXXKENO2fesL2zR1+U655FLvtCRtLjqoact3KuMMlxbdOkj2SGvs91AeWyNJTptLrSOMY90e2p+1IVxKa8SCBQtks9nc/7Kzs1vc1scff+zRVmpqqu8CBQAvJce1Nq3qauaYTKWlxGjC4u3qPXONJizerkMVTlVVS4cqKk2JqT4lZcdMrd6D/4VnOtgCWVlZcjgcyszMdC9bsGCBcnJyGnzPW2+9pYEDB7qfp6SkKDc3V5L02GOP+StUAD5SUVkVVlVpNcyqTmtlk+JaR+raPudp0I/OVEmZU/cu/VAj572napcpITUoVC+pNbUqrSWCpbctOKK0gNGjR2v8+PH1vlaTNJ3q1B6hlJQU5eXlSTqRVAGwtgun5VOVFkDVLmnO2K4e44ysWJkmmT8ey78ar0priWCpZCMx8oHTJU0AgKajMg1mIzECgAbsvm94WFWl1TCzNyQYKtOkUL6URlUaiZEPbN++XSUlJaqqqlJqaqqGDBmi5ORkv2zL6XT6pd2WqonHanGFMvZ54NhtkmyuWs9dstssNtjFDzbePdCU7d62ZEedyrSpy3Yq8+y2evaXPUyJqSEhexwYVWn+ONatcM5qSrJHYuQDTzzxhMfz6Oho5ebm6o9//KPPt7VixQqft+kLBQUFZocQdtjngRFx9KguNx4XFhbqeJvQH2NUZtLvryHxUunBCI8xRa1sUmmFU9fNf0u/SDuuWAt1YsRZKBZfC9XzS1ZWVqPrkBh5IS0tTfPmzdPw4cN17rnn6uDBgyosLNQ999yju+++WzExMfr973/v022OHDnSp+15y+l0qqCgQEOHDg3bbtdAY5/7VqNzpZWXux/2vWSA7Anxfo7IfN3u9/3A2+awSYqOitCdQ8/XlY6z3fOmzf6301LVaTumDjY7BJ9zOqtUWFiowYMH++w+RsFSjVYjuKK1mAEDBmjAgAHu5+ecc46uv/56de/eXT179lReXp5uueUWRfrwxmRW/UVot9stG1uoYp/7Rrepq077eu2qtH6PvEtVWgC4JD10VTfLz5tmdgLpP5HS5rd91lqwVKPV4AaPfvDjH/9Yl1xyiQ4ePKiPPvqo8TcAADxQnQaz0GPkJykpKZKk8lrd8ACsh7nS6rLCPXqCoTotFCvTqEojMfKL48eP6/3335ckdezY0eRoAJwOc6XVZeacaVJD86btUp+0JM2/trupsdUWbGNnmoK50kiMvLJ161b16OFZQnr8+HHdfffd+uSTTzRo0CB16NChgXcDgLVYZQ6wSSMu0I0L3/cYU5QQY9ekEReYGFVdJWXHTJtbDv5DYuSFnj17qmvXruratavOOeccHTx4UOvWrdN///tfnXvuuXr22WfNDhFAEzVYnRZGc6WZNUfaqVrZpLZt7JoyqrMSYuw6VOHUvMJP9POnN1iqKk0Kvctp/pwrrSFW63mzVjRB5q677tLGjRtVUFCggwcPKioqSunp6ZoyZYruvPNOJSYmNt4IAEtoaFwNc6UFXrVLmjWmi8cYo/bxbSxXlSZZYzyW7/lnrrSGWK1qjcTICw8//LDZIQBASKIqDWYhMWqinJwc5eTkaNy4cVqyZEmL2vj444/VuXNn93MGZgPW0eAlkTCqSrNS70cwVKVJoXgpjao0EqNGOBwO5ebmup9nZma2uK2UlBSPthJC+AQLBJsGxzmEUVWa2dVoNYKlKk2y3vgYb1GVRmLUKIfDIYfD4ZO2UlJSlJeX55O2AMDXrFJh9dR1PXT7ku0eY4r6ZaTo8eyLlBQbZWJkCAckRgAAS0mKjdKiG/to99el+teq9frZsH668ByKWRAYTAkCALCkjLPi1CXJpYyz4swOBWGExAgAAMBAYgQAAGAgMQIAADCQGAEAABhIjAAAAAwkRgAAAAYSIwAAAAOJEQAAgIHECAAAwEBiBAAAYCAxAgAAMJAYAQAAGEiMAAAADCRGAAAABhIjAAAAA4kRAACAgcQIAADAQGIEAABgIDECAAAwkBgBAAAYSIwAAAAMJEYAAAAGEiMAAAADiREAAIAh0uwAAISfPfsOq7ikQqnJMcpo19bscADAjcQICFIl5ZWyR1abHUazlFZUavLSndpUdNC9rE9akmaOyVRiTJSJkdUvOa612SEACDASI3ilorJKx46f+N/uspkdTlhwOk/s876z15odSrO1sklt29j15DXd1SstUVuKSnXv0g81bO7bqnaZHV1du+8bLlVWKcZ4XlFZJXtllakxBaOYKH7VIHhwtMIr3e4vlBSpSZsLzQ4lzATnV7faJc0a00WjunaQJI3q2kEuuTRh8XaTI6vfhdPyFV15VB8Zz/vOXqcjUW1MjSkYFc8eZXYIQJMx+BpAQPVKS/R43jstyaRIAKCu4PyzE5axY+pg5eev0vDhw2S3280OJyw4nU7l56/SpM3B+fXdUlTq7jGSpM21xhtZze77hkvl5dLcE8833j1A9oQEU2MC4F/BeWYNoAULFignJ8f9fNy4cVqyZEmL2lq5cqUuu+wy9/MBAwZo7dq13oZoqpioSLWOOPG/3c7hFAhOm0utI6SNdw+UPTK49vmtL2zT1OU75ZJLvdOStLnooKYt36U+aUmaf213s8OrIyYqUnJGejy3M14GCGl8w5soKytLDodDmZmZdV779ttv9cADD+j111/Xl19+qdjYWJ1//vn65S9/qVtuucW9Xnp6unJzcyVJ06dPD1jsCB0lZcfkrKpSmdPsSJqvtKJSzuPVOlRR6TGmqEfHBM0cU/d7BQBmIDFqotGjR2v8+PF1ln/wwQcaNmyYSktLNWrUKF111VUqKyvTRx99pNdee61OYpSXlyfJ+olRRRMrb2oqpKhKC4weM1YbjyI1+f21ZobSbDUVafOu7q7kOLve+ni/Xtj0hbZ/cUhDHn3b7PDqRVVaw6g0Q6jiyPbC999/r6ysLEnS1q1b1bVrV4/Xq6qC9wR64bT8ZqxNVRoad2pFWt9OKepybrxlK9IkqtJOh0ozhCoSIy/Mnz9fX3zxhf7617/WSYokKTLIxn8A/kZFGgCr4ze3F1566SXZbDaNHTtW//nPf7Rq1SodOXJEP/rRjzRixAhFRVnvTr5Ntfu+4U1ar6ZCiqq0wGheT571BFNFmkRVGhCOSIxaqLKyUh9++KHOPPNMzZs3T7m5uaquPjk9Q6dOnbRs2TJ16dLFp9t1OgMz6tbe1OFCRoWU3eaS3WbBWxeHmI13D1SV06l169ZpwIABigyiZPTmRds0ZdmHdSrSeqcm6onsbmaHVy+7zSXVOq45zk8KxLmoZhuBOu8h9Pd5U/6AJzFqoYMHD+r48eMqKSnRfffdpwcffFDXX3+9nE6nnnnmGc2YMUNXXHGFPv74Y7Vp47sxCStWrPBZW75UUFBgdghhoXY12rp168wLpBnKndLLRRH65HubWtnkMaYo4wyXhsRXaM3q1adpwRxxxvkz4uhRXW4sKyws1HEffp/RNJxfAi9U93nNuODTITFqoZreoePHj2vChAm666673K/dd999+s9//qOXX35Zr7zyiq677jqfbXfkyJE+a6tGUyvQ6uN0VqmwsFCDBw/mPkYBcGIKluBycn60LuqVlqhXP/hGjxb8V0cqj2vP9zbN2mHN42bH1MEnHpSXu5f1vWSA7AnxJkUUXHxRteZ0OlVQUKChQ4dyqT5A2OckRi0WH3/y5HjllVfWef3KK6/Uyy+/rPfff9+niZE/DtRuU1d52UKktNma5dYw36nVaDf166T28W0sXY0mnUxCa1el9XvkXarSmsiXVWt2uz1sf0mbJZz3OXOltVBsbKzOOeccSVJCPYMxa5YdOXIkgFEB1kQ1GoBgQY+RFwYPHqxFixZp9+7d6t7dczqD3bt3S5JSU1NNiKx5mlqBVh+q0gIrWKvSgq0aTar1vaAqDQgrJEZe+O1vf6tFixZp9uzZuvzyy929RHv37tXjjz+uVq1aaezYseYG2QTejAWombeLudICY+uUIXJWVWnN6tW6dMiQoJgrLdjmR6vh/l4wVxoQVviGe+GnP/2p7rzzTj366KPq2rWrrrjiCjmdTi1fvlzffvutZs2apfPPP9/sMBFCkuNay+lspTi7lBwbJbvdrpKyY2aHdVqTRlygGxe+7zGmKCHGrkkjLjAxqsa592v5MSWbGwqAACIx8tIjjzyiLl266Mknn9SCBQtks9l00UUX6emnn9aYMWPMDi9oeFMZF25OnZ/u5Pxp1lRTlTZlVGclxNh1qMKpeYWf6OdPb1B1ENwSqPbga+ZKaxrmUUMw4+j1gfHjx9c7wSyaLljHzpgneOanO7UqTVJQVKXVh7nSmoZ51BDMqEpropycHNlsNmVnZ7e4jZUrV8pms8lmYxZ6hBeq0gAEC3qMGuFwOJSbm+t+npmZ2eK20tPTPdoKhoq1QPGmMi7cnFoJGAy9bcFYlVYfqtKA0Edi1AiHwyGHw+GTttLT05WXl+eTtkINYxKa7tRKwK1Thpgd0mkFa1WaW61yfarSgNDHNxwIcslxrc0O4bSeuq6Hbl+y3WNMUb+MFD2efZGSYqNMjKyJbAy2BsIJiREAv0qKjdKiG/toz77DKi6pUGpyjDLatTU7LACoF4kRgIDIaNeWhAiA5VGVBgAAYCAxAgAAMJAYAQAAGEiMAAAADCRGAAAABhIjAAAAA4kRAACAgcQIAADAQGIEAABgIDECAAAwkBgBAAAYSIwAAAAMJEYAAAAGEiMAAAADiREAAICBxAgAAMBAYgQAAGAgMQIAADCQGAEAABhIjAAAAAwkRgAAAAYSIwAAAAOJEQAAgCHS7AAAwGr27Dus4pIKpSbHKCOOvx+BcEJiBMB0JWXHzA5BklRaUanJS3dqU9FB97L+Z0frb8bjg+WViow0J9bkuNambBcINyRGgI9UVFYFZDtOZ5WOHT+xPbvLFpBt+luPGavNDkGS1MomtW1j15PXdFevtERtKSrV/S9tcb8+8JH1OhLVxpTYdt833JTtmsmbYz0mil9vaBmOHMBHLpyWH8CtRWrS5sIAbi88VLukWWO6aFTXDpKkUV07qFXFhdIskwNToI8vK2nZsV48e5QfYkE44OI5ANTSKy3R43mP1MQG1gQQiugxAnwkUJc6nE6n8vNXafjwYbLb7QHZpr9ZqTdkS1Gpu8dIkrYWl+oyE+OpEZ6X0kLvWIf1kRgBPhKoMQ1Om0utI05sz24Pja/w1ilDzA5BkpTz/BZNWfahXHKpd1qSNhcd1Kw3drsTo7V39VNkfLwpsYXjmJlQPNZhfVxKa8SCBQtks9nc/7Kzs1vc1sqVKz3aGjhwoO8CBSyspOzYaf+ZrbSiUre+sE3//vo7fXfEqQmLt6v3zDWasHi70s+MMzs8SbLU/gJCGSl4E2VlZcnhcCgzM9O9LDU1VZ9//vlp3/f222+rX79+kqT09HTl5uZKkqZPn+6/YBFwgapIk4KzKs0qVWcNObUa7dUPvtGjBf/Vkcrj2lJc6l7PzKq02sLlspoVj/Vw7LkLN/yEm2j06NEaP368x7I77rhDhw4dqrPugQMH9OSTTyoxMVG9evVyL09PT1deXp4kEqNQE/gxMlSl+dKp1Wg39euk9vFtNGHxdpMjq5+VxmT5n7WOdardQh+JkRfuuOOOepc/8sgjkqTrrrtObdqY/9clgMadWo3WOy3JpEgAmInEyA/++te/SpJuvPFGkyNBoATy0kYwVuoEQw/HqdVom2vd/dpqwudSWvAd6wh+JEY+9t577+mjjz5Sz5491a1bN5+373Q6fd6mN2risVpcgWYP5PAHo1LHbnPJbnMFcMMtt/HugWaHcFq3Ldmhqct3elSjTVu+S71TEzXvinRp7on1Vt/WVxEJCabGKilofu5es+CxHurnulA/pzclwSYx8rGa3qKbbrrJL+2vWLHCL+16q6CgwOwQwk6w7vMyC55vfxor7fo60mNMUaxd+mlshd5660vV1KKuf+cdHbfY5fG4MOhICdZjPZiF6j7PyspqdB0SIx8qKyvTyy+/rJiYGF199dV+2cbIkSP90m5LOZ1OFRQUaOjQoSHR1R3I6rKWcjqrVFhYqMGDBwflvV263W+dgbQ1aqrSpgxLV0KMXYcqnJpX+Ime2C21PhbpToymb4vUEYtVJe2YOtjsEPzGl8c61WRNE2rn9JbgSPGhl156SWVlZbrhhht0xhln+GUbVj1Q7Xa7ZWNrjm5TV5kdQhNFSpvfNjuIkHFqVZokS1el1WbFRNO3fHOsU03WPKFyTm8JbvDoQ/6+jAbAf6hKAyDRY+Qzu3fv1oYNG/SjH/1Il1xyidnhoIWCodon2Ct1rFqhFkxVabUFwzHbUsF+rCM4kRj5CCX6oSEYxiEE+/xRVpkXrbZbX9hWb1XaBe3aatawLu6qNDPnSmtIMByzLRXsxzqCE0eaDzidTi1atEh2u12//OUvzQ4HsLTkuNZ1lpk9/9fMMZmavHSnx5iiVjbpYHmlrvvrFn1kYmyNqdl39e1XAM1HYuQDr776qvbv36+f/exnOuuss8wOB14Ilqo0q80f5S0rzaVmkxTbOlJzxnZVr7REbdv1tbvHyCpzpdUnFC+p+eJYD+UeNfgHR4wPMOg6dFh1/Etd1po/KpS4JM0Z29U93mhEl/bmBtREwXPsNpd3xzrVaGguEiMfsOpNFwG0zKkVagDCB4lRE+Xk5CgnJ0fjxo3TkiVLWtTGypUrddlll/k4MvhSMFyOCMVKHav1dpxaoRYMguHYba5QPNZhfSRGjXA4HMrNzXU/z8zMbHFb6enpHm2lpqZ6Exr8IBjGI4RipY6VKtVOrVDbuut/qvlzxopVaTWC4dhtrlA81mF9HGmNcDgccjgcPmkrPT1deXl5PmkLCCVWqqh66roeun3JdneFWnTlUXdilBQbJbuFYgXgeyRGAFBLUmyUFt3YR3v2HVZxSYXS2rjcVWkAQh+JEQDUI6NdW2W0ayuVl5sdCoAAYq40AAAAA4kRAACAgcQIAADAQGIEAABgIDECAAAwkBgBAAAYSIwAAAAMJEYAAAAGEiMAAAADiREAAICBxAgAAMBAYgQAAGAgMQIAADCQGAEAABhIjAAAAAwkRgAAAAYSIwAAAAOJEQAAgIHECAAAwEBiBAAAYCAxAgAAMJAYAQAAGEiMAAAADJFmBwAgNO3Zd1jFJRVKTY5RRru2ZocDAE1CYgSEqJKyY6Zst7SiUpOX7tSmooPuZX3SkjRzTKYSY6ICHk9yXOuAbxNA8CIxQlCrqKwyO4SAczqrdOz4ic9ud9kaXK/HjNUBjOqkVjapbRu7nrymu3qlJWpLUanuXfqhhs19W9WuwMez+77h3jVQWaUY42FFZZXsQXLMxURxegdagm8OgtqF0/LNDsEkkZq0udDsIOpV7ZJmjemiUV07SJJGde0gl1yasHi7KfF4e4xEVx7VR8bjvrPX6UhUG++DCoDi2aPMDgEISgy+BuBzvdISPZ73TksyKRIAaB56jBDUvL5MEoScTqfy81dp+PBhstvtDa5nZm/alqJSd4+RJG2uNd4o0Lw+RsrLpbknHm68e4DsCQlexwTAukiMENTCcRyF0+ZS64gTn91ub/jzb50yJIBRnfDZ/jJNXrZTU5fvlEsu9U5L0uaig5q2fJf6pCVp/rXdAx6T18eI8+T7Y6IiZQ/DYw4IJ1xKa8SCBQtks9nc/7Kzs1vc1sqVKz3aGjhwoO8CRVgqKTvW4L9AKq2o1K0vbNPPn9mo/+4r06GKSk1YvF29Z67RhMXblXFWnGaOyQxoTDXMqs4DEJz406eJsrKy5HA4lJnpeXL/5ptvNGfOHBUUFOjzzz9XXFycMjIy9Jvf/EbXXHONIiIi3Oump6crNzdXkjR9+vSAxh9qwrEarUbtqrQeM6wxALu+SrQ//vPfKj9WJZekTUUHNeTRt02Lz6vLaUFalXY64djTCjQV344mGj16tMaPH++x7LPPPlOfPn1UUlKi4cOH64orrtD333+vZcuW6Ze//KUKCwv1/PPPu9dPT09XXl6eJBIjb4VvNVoNa1WlWa0S7VTeHC/BWpV2OlSsAQ3jUpoXHn74YR04cEBz587Vm2++qTlz5uipp57SRx99pPPOO08LFizQ559/bnaYQEBQiQYgFNBj5IXPPvtMkjRy5EiP5QkJCbrkkku0ePFiHThwQB07djQjvJAWjtVoNWpXpXW73zq9RlaqRDuVV8cLVWlAWCEx8kJmZqby8/O1YsUK3X777e7lhw4d0rvvvqv27dvrwgsv9Ok2nU6nT9vzVk08gY7L3vANn0OfUZVmt7m08e6BZkcjSbptyY56K9G6nnOGru9zns5NilZaSqxp8dltXtxyu9Z77TaXd21ZhNXOIw0x6/wSzkJ9n5/uFic1SIy88Ic//EGvvfaa/u///k8rV65U165d3WOMYmJitHTpUkVHR/t0mytWrPBpe75SUFBgdghhp6F9XmbC+WxIvFR6MMJjTFGsXfr315X6w792SpLSz3DpF2nHFdv4ecmn4rzcXsTRo7rceFxYWKjjbYJ/jFGw4fwSeKG6z7Oyshpdh8TIC+3atdOGDRt03XXX6c0339TKlSslSdHR0frtb3+rbt26+Xybp162M5vT6VRBQYGGDh3apEzcDKFWweZ0VqmwsFCDBw+u9z5GVri8ZpMUGWnXkz/v4jFf2ux/OwM+X9qOqYO9a6C83P2w7yUDZE+I9zIicwVTRVownF9CDfucxMgrn3zyia644grFxcVp/fr1cjgcOnTokP7+979rypQpys/P1/r16z1K9r1l1QPVbrdbNrZuU1eZHYIfREqbzSt/b4xL1qlS8zZRrF2V1u+Rd4O+Ki0YK9KsfH4JVeG8z0mMvDB+/Hh9/vnn+uyzz9S+fXtJUlxcnO6++27t27dPjz32mJYsWaJrr73W5EiBwKNKDUAwIjFqocOHD+vdd99V9+7d3UlRbYMGDdJjjz2m7du3kxiZLNQq2BqbK80q93iySpUac6UBaA4SoxaqrKyUJB04cKDe1/fv3y9Jat26dcBiQv2CaUxFUzQ2V5oZc6TVZrX50pgrDUBz8A1voeTkZF1wwQX6z3/+o2effVY33XST+7VDhw7p4YcflnSi5wjwh5LyStkjq80Ow620olKTl+7UJqNnqJVNHmOK+qQlmTJfWknZMSXH8QcKgKYhMfLC3LlzdeWVV+rmm2/WkiVLdNFFF6m0tFSvvvqq9u/fr7Fjx2rIEHP/eg8XoVZ5djo1c6X1nb3W7FA8WHm+NOZKa75Q62kFmooj3wuXXXaZ3nvvPT300EN65513tG7dOrVp00adO3fWtGnTdMstt5gdYtiwyriawLHeV9fK86UxV1rzBWP1GuAL1ju7BplevXrp5ZdfNjsMwBKoRAMQ7EiMmignJ0c5OTkaN26clixZ0qI2Vq5cqcsuu8zHkUEKvcqz06mpSpu02XpfX6tUop2KudIANJX1zqwW43A4lJub636emdnywaPp6ekebaWmpnoTGmoJp/EQNVVpG+8eKHukdT73rS9ss0wl2qm8Oj6oSgPCCt/wRjgcDjkcDp+0lZ6erry8PJ+0BSTHRlnqzrRPXddDty/Z7jGmqF9Gih7PvkhJsVEmRgYATUdiBMAnkmKjtOjGPtqz77CKSyqUmhyjjHZtzQ4LAJqFxAiAT2W0a0tCBCBotTI7AAAAAKsgMQIAADCQGAEAABhIjAAAAAwkRgAAAAYSIwAAAAOJEQAAgIHECAAAwEBiBAAAYCAxAgAAMJAYAQAAGEiMAAAADCRGAAAABhIjAAAAA4kRAACAgcQIAADAQGIEAABgIDECAAAwkBgBAAAYSIwAAAAMJEYAAAAGEiMAAAADiREAAICBxAgAAMAQaXYAAOAPe/YdVnFJhVKTY5TRrq3Z4QAIEiRGALxWUnbM7BDcSisqNXnpTm0qOuhe1ictSTPHZCoxJqr5DZYfU7Lx8GB5pSIjW/ZZk+Nat+h9AAKLxAhogYrKKtO27XRW6djxEzHYXTbT4qitx4zVZofg1somtW1j15PXdFevtERtKSrVvUs/1LC5b6va1fz2oiuP6iPj8cBH1utIVJsWxbX7vuEtel84a+hYj4niVxf8h6MLaIELp+WbHEGkJm0uNDkGa6p2SbPGdNGorh0kSaO6dpBLLk1YvN3UuMw/ZoJV3WO9ePYok2JBOGDwNYCQ0yst0eN577QkkyIBEGzoMQJawMzLIk6nU/n5qzR8+DDZ7XbT4qjNar0hW4pK3T1GkrS51ngjs3AprfmseKwj9JEYNWLBggXKyclxPx83bpyWLFnSorZWrlypyy67zP18wIABWrt2rbchwgRmjnFw2lxqHXEiBrvdGl/hrVOGmLr9z/aX6cvSI/pBYrQeXvVfTV2+Uy651DstSZuLDmra8l3qk5ak+dd2b37j5eXS3BMP197VT5Hx8S2KkXExzWfFYx2hjyOtibKysuRwOJSZmemx/KOPPtKMGTO0Zs0alZaWqn379ho9erRyc3OVlOTZfZ+enq7c3FxJ0vTp0wMWO+APVqhEq68Crft5CUpLifEYU1RTlWamkrJjVKYBQYDEqIlGjx6t8ePHeyzbuHGjhgwZoiNHjigrK0s//OEP9cEHH+iJJ57QypUr9d577yk5Odm9fnp6uvLy8iSRGIUyf1esWaUqzQqVaA1VoB0+6vRYb1PRQQ159O0WbcNXVWkSl9Oai6o0mIGjyws333yzysvLtXz5cl155ZXu5Q899JAmTZqkyZMn6+mnnzYxQpghMONtqEqTrFuB1hCrjcUKDlSlIbCoSmuhTz/9VDt37lSvXr08kiJJuuuuu5ScnKxFixapvLzcpAiB8EAFGgBfoseohfbu3StJSktLq/Naq1atdN5552n79u3auHGjLr300kCHBxP5+3KJVSp1rNL7YcUKtIZwKa15rHKsI7yQGLVQSkqKJKmoqKjOa9XV1friiy8kSf/97399mhg5nc7GVwqgmnisFpeZ7P4e9mNU6thtLtltLbiVs49svHugaduucduSHfVUoO1U79REPZHdzSfbsNWqSlt9W19FJCS0uC0zf15BqYFjnfON/4T6Ob0pCTaJUQudf/756tSpk7Zs2aI33nhDo0advOb92GOPqaSkRJJ06NAhn253xYoVPm3PVwoKCswOIeyYvc/LLHDeHBIvHSiJ8BhT1Mom7T9wUK++uVqxPuhkiDh6VNnG4/XvvKPjbVo++DqOTo8WMftYD0ehus+zsrIaXYfEqIVsNpvmz5+vK664QldeeaVGjx6tH/7wh9qxY4dWrVqlLl266MMPP1SrVr4dxjVy5Eiftuctp9OpgoICDR06NKi7us2c+6y5nM4qFRYWavDgwabe26Xb/dYY/N3KJsW1jtS1fc7ToB+dqZIyp+5d+qFm/9vZornRThVdGelOjKZvi9QRLyqidkwd7H1AIaSx6rJQOb8EE/Y5iZFXhg8frvXr1+v+++9XYWGh3njjDWVmZmrp0qVas2aNPvzwQ5111lk+3aZVD1S73W7Z2Jqi29RVZofQTJHS5paVn4eaapc0Z2xXj3FGVq1Ms0oyaRVNrS4L9vNLMArnfU5i5KU+ffro9ddfr7P8sccekyT17NkzwBEB4YfKNAC+QmLkB59//rneeecdXXjhherSpYvZ4aAJgqlayCqVOlapSpOCpzItmI4zIFyRGHmhrKxMsbGxstlOliF99913uv7663X8+HE98MADJkaH5gimO+laZf4os+dHq3HrC9t8OzfaqXw0V5oUXMcZEK74lnph2bJluvfeezV48GCdffbZ+vbbb/Xqq69q//79uv/+++vc+BEIBVaYI622mWMy9cd//rtOZZrzeLVKKyqVGBNlYnSemC8NsD4SIy906dJF3bp106pVq3TgwAHFx8erb9++uvPOOzVo0CCzw4OPWK1izey50qwwR9qpGqpMGzb3ba8r03w5V5rE5bTa6EGDFXFUeqFbt2567bXXzA4DfmalsTQnMVdabcFUmWbN48kczHkGK2KutCbKycmRzWZTdnZ24ys3YOXKlbLZbB5jkgD4BpVpAHyBHqNGOBwO5ebmup9nZma2uK309HSPtlJTU70JDQFitUsfZlelWbXHg8o0AL5AYtQIh8Mhh8Phk7bS09OVl5fnk7YQOFYbB2F2VZpVqtFq82tlmg+r0iTrHU8APPENBdAsVqyqeuq6Hrp9yXaPMUX9MlL0ePZFSor1sirNdnLwfVJslOwW/PwAfIfECEDQS4qN0qIb+2jPvsMqLqlQanKMMtq1NTssAEGIxAhAyMho15aECIBXqEoDAAAwkBgBAAAYSIwAAAAMJEYAAAAGEiMAAAADiREAAICBxAgAAMBAYgQAAGAgMQIAADCQGAEAABhIjAAAAAwkRgAAAAYSIwAAAAOJEQAAgIHECAAAwEBiBAAAYCAxAgAAMJAYAQAAGEiMAAAADCRGAAAABhIjAAAAA4kRAACAgcQIAADAEGl2AAAQrvbsO6zikgqlJscoo11bs8MBIBIjAGGkpOxY899UfkzJxsOD5ZWKjGxBG6corajU5KU7tanooHtZn7QkzRyTqcSYKK/b94XkuNZmhwCYgsQICFEVlVVmh2A5PWasbvZ7oiuP6iPj8cBH1utIVBuv42hlk9q2sevJa7qrV1qithSV6t6lH2rY3LdV7fK6eZ/Yfd9ws0OQ01mlY8dPHMt2l80v24iJ4tcgPHFEACHqwmn5ZoeABlS7pFljumhU1w6SpFFdO8gllyYs3m5yZCdZ5/iJ1KTNhX5rvXj2KL+1jeDE4GsAMEGvtESP573TkkyKBEBt9BgBIcoKl0Ksxjq9INKWolJ3j5Ekba413sgKrHD8OJ1O5eev0vDhw2S3280OB2GCxAgIUYydqGvrlCHNf1N5uTT3xMO1d/VTZHy813Hc+sI2TV2+Uy651DstSZuLDmra8l3qk5ak+dd297p9X7DC8eO0udQ64kQsdrv58SA8hN2ltAULFshms7n/ZWdnB2zbR48e9di2zeafwYQA6pcc19r0aqvSiko5j1frUEWlJizert4z12jC4u1KS4nRzDGZpsZWW0nZsZZV8QFBLmxT8KysLDkcDmVmnjwRffrpp1q0aJG2bdumrVu36ptvvlHHjh1VXFx82rby8/M1a9Ysbdu2TTabTT169NCUKVN06aWXeqwXGRmp3NxcSScStM8//9znnwvhiyq0pmtOdZqvq9JqKtLmXd1dyXF2vfXxfr2w6Qtt/+KQhjz6tldt+4OZl9QCUZXmT1bodUPzhe1PbfTo0Ro/frzHsvXr12v69OmKiIhQ586dtXfv3kbb+fvf/67rr79eZ555pru9l156SUOHDtXLL7+sq666yr1uZGSk8vLyJElr164lMYJPWWn8DBp2akVa304p6nJuvKUq0moz/7jyb1WaP1HxFpzCNjGqT//+/bVhwwZ169ZN0dHRatPm9H8ZlpaW6ve//71SUlK0bds2nXvuuZKkP/7xj7rooot0yy23aPjw4WrbljvaAjiJijTAukiMaunUqZM6derU5PX/8Y9/6NChQ5o+fbo7KZKkc889VxMmTFBeXp6WLl2qX/7yl/4IF/BghSqiYGF2L4jVK9JqM/dSGlVpCDwSIy+sXbtWkjRs2LA6rw0fPlx5eXlat26dTxMjp9Pps7Z8oSYeq8UVyhra5/bgG4Jhmo13D2zyurZaVWmrb+uriIQEr7Z925Id9Vak9U5N1BPZ3bxq2x/sNhNvxW1UpdltLnPjaKFgPC+G+jm9KQk2iZEX9uzZI0nKyMio81rNspp1fGXFihU+bc9XCgoKzA4h7LDPm6bMy/N7xNGjqqldXf/OOzreyCX2xvw0Vtr1daTHmKJYu/TT2AqtWd38KUv8Lc4CHTUc64EXqvs8Kyur0XVIjLzw3XffSZLi67mvyRlnnOGxjq+MHDnSp+15y+l0qqCgQEOHDqWrO0Aa2+dUp3nqdr93A3ejKyPdidH0bZE64mWlUU1V2pRh6UqIsetQhVPzCj/RE7tlmXnSatsxdbBp23Y6q1RYWKjBgwdb/j5GoVKBxjmdxCjoWPVAtdvtlo0tVDW0z7tNXWVCNGiqU6vSJKl9fBvLVqV5m1h6L1LabL3bGJwq1CrQwvmcHnY3ePSlmp6i+nqFvv/+e491AKAGVWmAddFj5IWMjAy9//772rNnj5KTkz1eO934I8CfqE7zZHYFWn2oSmsaqtJgBhIjLwwYMEAvvviiVq1apb59+3q8lp+f714HCKRQGevgKy2aH602H8+V1tA8ad3OjdcNP03VDxKj1enMOO9i9iEzjyfmSoMZuJTmhV/84heKj4/XvHnz9NVXX7mXf/XVV/rTn/6klJQUjRkzxsQIAdTMj3bqP7PMHJOpjLPiPOZJq3a5tOOr73Tnyzv082c26tYXtqm0otK0GGuYPa8cYAZS8FoOHDigiRMnup87nU4dOHDAY+qQhx9+WCkpKZKkxMRE/elPf9L111+v7t27a9y4cZJOTAlSUlKil156ibtew2dqqs2Cff4oq2jqfGm+nivtVDZJLpf05DXd1SstUVuKSnXv0g81bO7bplepmX1Z1irHOr2w4YWfdi1lZWVauHChx7Ly8nKPZXl5ee7ESJKuu+46paSkaNasWXr++ec9JpEdMsTLLnygFs+xMsE7fxQ8ueRZpTaqawe55LJElZo1xmeZf6yHWsUZTo/EqJbU1FS5XM3/E23EiBEaMWKEHyICEA6oUgOsI2wTo5ycHOXk5GjcuHFasmRJQLZ59OhRRUdHB2RbCD01lzWo1PENa/SGnGDVKjXzL6VxrCPwwi4xcjgcys3NdT/PzMwM2LYjIyM9tg00R804Byp1fKPJ1Wo+rko7VUNVan3SkjT/2u4+3VZzmT22hmMdZgi7I83hcMjhcJiy7cjISOXl5ZmybQCemlxxZTs5xUpSbJTsPq7Ueuq6Hrp9yXaPMUX9MlL0ePZFSoqN8um2ADQu7BIjALCSpNgoLbqxj/bsO6zikgqlJscoox3VrIBZSIwAwAIy2rUlIQIsgBs8AgAAGEiMAAAADCRGAAAABhIjAAAAA4kRAACAgcQIAADAQGIEAABgIDECAAAwkBgBAAAYSIwAAAAMJEYAAAAGEiMAAAADiREAAICBxAgAAMBAYgQAAGAgMQIAADCQGAEAABhIjAAAAAwkRgAAAAYSIwAAAAOJEQAAgIHECAAAwEBiBAAAYIg0OwAACJQ9+w6ruKRCqckxymjX1uxwAFgQiRGAgCgpO2batksrKjV56U5tKjroXtYnLUkzx2QqMSbq9G8uP6Zk4+HB8kpFRnr/OZLjWnvdBgD/IDEC/KCisspvbTudVTp2/MQ27C6b37bjaz1mrDZt261sUts2dj15TXf1SkvUlqJS3bv0Qw2b+7aqXad/b3TlUX1kPB74yHodiWrjdTy77xvudRuhICaKX0GwHo5KwA8unJbv5y1EatLmQj9vI3RUu6RZY7poVNcOkqRRXTvIJZcmLN5uSjz+Pz6CQ/HsUWaHANTB4GsAYaFXWqLH895pSSZFAsDK6DEC/MCfl0qcTqfy81dp+PBhstvtftuOr5ndS7KlqNTdYyRJm2uNNwo0LqUB1kViBPiBP8dOOG0utY44sQ27PXi+wlunDDFt27e+sE1Tl++USy71TkvS5qKDmrZ8l/qkJWn+td1P/+bycmnuiYdr7+qnyPh4r+NhbA1gXWH37VywYIFycnLcz8eNG6clS5YEbPvt27fXvn373M+LioqUmpoasO0DZjGzEuup63ro9iXbPcYU9ctI0ePZFykptpGqNNvJgfRJsVGyU1EGhLSwS4xqZGVlyeFwKDMz073s008/1aJFi7Rt2zZt3bpV33zzjTp27Kji4uIG25k3b557/d27d+v48eN66623NHDgwHrXnzhxosrKyrRs2TLt2LHDx58KMI+Z5fiNKa2oVGVVtceyyqpqHSw/JperkbI0P5Tr10bpPmAtYZsYjR49WuPHj/dYtn79ek2fPl0RERHq3Lmz9u7d22g7t912mySpQ4cOOvPMMxt9z8SJEyVJxcXFJEYhyp+l+pJ1y/XNLMdvjNXK9WtjvNEJXF6EVXAk1tK/f39t2LBB3bp1U3R0tNq0afwE+Prrr6tHjx5q3769fvvb3+qZZ54JQKSwssAMMqZcvzmsVq5fm9mD0q2C0n1YBYlRLZ06dVKnTp2a9Z5Ro/gyA8GAcn0ATUFiBPiYvy+NWLVc3+o9H1Yq16+NS2mAtZAYBRmn02l2CB5q4rFaXGay+3vYj1Gub7e5ZLc1MkAmgDbePdDsEBp025Idmrr8wzrl+r1TE/VEdrfTvtdWq1x/9W19FZGQ4NPYrPQzNFN95xDOL4EX6vu8KX9MkhgFmRUrVpgdQr0KCgrMDiHsWH2fl1nkvFrulPYfiNChCpvHmKJObV0aEl+hNatPP2g84uhRZRuP17/zjo43YexhY+Ks09EXFKx+rIeiUN3nWVlZja5DYhRkRo4caXYIHpxOpwoKCjR06FBLXdYxUyCq0goLCzV48GBL3+Cx2/3WGBxeU5E27+ouSo6z662P9+uFTV+ouKxKs3Y0vv+iKyPdidH0bZE64oPqqR1TB3vdRqg4XTUa55fAY5+TGAUdqx6odrvdsrEFWrepqwKwlUhp89sB2E7wO7UirW+nFHU5N97UijSrJI1W0JRqNM4vgRfO+5xJZAGEPCrSADQVPUaAj4VrVdqprFSlZrWKNCrRAOsiMQJ8zN938A2WSWTNnDS2Nq8mkJWYRBYIM3w7azlw4IB7yg7pxF/mBw4c8Jg65OGHH1ZKSor7+ezZs/Xxxx9LkjZs2OBetmDBAkknph4ZPXq032MHUL9JIy7QjQvf9xhTlBBj16QRF5gWU+155ZgrDbAWEqNaysrKtHDhQo9l5eXlHsvy8vI8EqOVK1dq3bp1Hu/Jzz95CSE1NZXEyEL8XTEWCFadK+1UVpk7raYqbcqozkqIsetQhVPzCj/Rz5/e0Og8aRJzpfkDPWawMo7OWlJTUxufafsUa9eu9U8w8AsrjXvxDnOlNdWpVWmS1D6+jSXmSZNC6ZhsOuZFg5WFbVVaTk6ObDabsrOzG1/Zh9q3by+bzVanZwqA/1CVBqCpwq7HyOFwKDc31/08MzMzoNufOHGiysrK3M8TfDy9AE4vFC5bUJXWfFarSqstFI5JIJSEZWLkcDhM237twd0IvFAY20BVWvNYsSqttlA4JoFQwjcSgF9Ypdrqqet66PYl2z3GFPXLSNHj2RcpKTaq8QZsJwfsJ8VGyW6RzwXAP0iMAIS0pNgoLbqxj/bsO6zikgqlJscoo11bs8MCYFEkRgDCQka7tiREABoVtlVpAAAApyIxAgAAMJAYAQAAGEiMAAAADCRGAAAABhIjAAAAA4kRAACAgcQIAADAQGIEAABgIDECAAAwkBgBAAAYSIwAAAAMJEYAAAAGEiMAAAADiREAAICBxAgAAMBAYgQAAGAgMQIAADCQGAEAABhIjAAAAAwkRgAAAAYSIwAAAAOJEQAAgCHS7AAAwJf27Dus4pIKpSbHKKNdW7PDARBkSIwAeK2k7JjZIai0olKTl+7UpqKD7mV90pI0c0ymEmOiWt5w+TElGw8PllcqMrLpnzU5rnXLtwvAFCRGQABUVFb5rC2ns0rHjp9o0+6y+axdb/SYsdrsENTKJrVtY9eT13RXr7REbSkq1b1LP9SwuW+r2tXydqMrj+oj4/HAR9brSFSbJr93933DW77hEBITxa8aBA+OViAALpyW7+MWIzVpc6GP2wxu1S5p1pguGtW1gyRpVNcOcsmlCYu3mxaT73/uwal49iizQwCajMHXAEJGr7REj+e905JMigRAsKLHCAgAX15ScTqdys9fpeHDh8lut/usXW9YpWdkS1Gpu8dIkjbXGm9kBi6lAcGHxAgIAF+OsXDaXGodcaJNu90aX+GtU4aYHYJufWGbpi7fKZdc6p2WpM1FBzVt+S71SUvS/Gu7t7zh8nJp7omHa+/qp8j4+Ca/lbE1QPAJu0tpCxYskM1mc//Lzs4O6Pbbt2/vsf3i4uKAbh/wh+S41qZXYE0acYGqXSfGFPWeuUYTFm9XtculSSMuMDUuAMElbP+cycrKksPhUGZmpnvZp59+qkWLFmnbtm3aunWrvvnmG3Xs2LHB5GXPnj36xz/+oZUrV+qTTz7RgQMH1K5dOw0aNEj33nuvfvSjH9V5z8SJE1VWVqZly5Zpx44d/vp4MIkvq88aYsWqtBpmVqfVVKVNGdVZCTF2Hapwal7hJ/r50xuoSjMRvWYINmF7xI4ePVrjx4/3WLZ+/XpNnz5dERER6ty5s/bu3XvaNqZOnaqXXnpJmZmZysrK0hlnnKEPP/xQixYt0iuvvKKVK1eqf//+Hu+ZOHGiJKm4uJjEKAQFbqwNVWmnOrUqTZLax7ehKs1kVKQh2IRtYlSf/v37a8OGDerWrZuio6PVps3p/zIcMWKE/vjHP+qiiy7yWL5kyRJdffXVuuWWW7Rr1y5/hgygFqrSAHiLxKiWTp06qVOnTk1e/9QepxrZ2dnKzc3V7t27deDAAaWkpPgoQlhdIC6dWLEqrYbZPSRUpQHwFomRn9T8woqM9O0udjqdPm3PWzXxWC0us9gDMeTHqEqz21yy27wYPOMHG+8eaNq2b160TVOWfVinKq13aqKeyO7W4nZttarSVt/WVxEJCU1+r9V+Pmbw5tzA+SXwQn2fN+WPSRIjP9i8ebN27dqlXr16KaEZJ9GmWLFihU/b85WCggKzQwg7VtjnZRY4d5Y7pZeLIvTJ9za1ssljTFHGGS4Nia/QmtUtHxQecfSoampX17/zjo43cok9zlqdeCHBCsd6uAnVfZ6VldXoOiRGPvbdd9/phhtuUKtWrfTggw/6vP2RI0f6vE1vOJ1OFRQUaOjQoZa7rBNogahIk05UpRUWFmrw4MGm38eo2/3mDwA/OUdaF/VKS9SrH3yjRwv+qyOVx7Xne5tm7fBuH0VXRroTo+nbInWkkSqrHVMHe7W9UNTSyjTOL4HHPicx8qkjR45ozJgx+vjjjzVz5kwNHDjQ59uw6oFqt9stG1ugdJu6KoBbi5Q2vx3A7VnXqdVoN/XrZGo1mhWSRavxtjKN80vghfM+D7sbPPrL0aNHlZWVpbfeekv33HOP7r33XrNDAsIG1WgAfIUeIx84cuSIsrKyVFBQoEmTJmnWrFlmhwQTBKoCyUpVaWZXodWwUjUalWhAcCMx8lLtpGjixImaM2eO2SHBJIG6w6+V5koL6TnSajRzrjTu9AwEN77BXqi5fFZQUKA777xTDz30kNkhAQF16vxoJWXHAh7DzDGZ+uM//+0xpqiVTXIer1ZpRaUSY6ICHhOA4EViVMuBAwfcU3ZIJy5ZHDhwwONGjg8//LD7ho2//e1vVVBQoPbt26tt27bKy8ur0+b48eOVmprq58hhlkBVotXGXGl1tbJJca0jdW2f8zToR2eqpMype5d+qGFz3/ZqnjSp+XOlhcOlNHrFEMo4umspKyvTwoULPZaVl5d7LMvLy3MnRjWTy+7du1fTp0+vt82BAweSGIUw88bYMFdabdUuac7Yrh7jjFxymVKZZpVxV/7E/GcIZSRGtaSmpsrlavqfl2vXrvVfMACahco0AL4QtolRTk6OcnJyNG7cOC1ZsiRg223fvr327dsXsO3Bv8y4bGKlqrRTmdlbYpXKtHC4lAaEsrBLjBwOh3Jzc93PMzMzA7r9iRMnqqyszP3c11OGILDMGGthpaq0U5lVpebXyjSq0oCwEnbfYIfDIYfDYdr2aw/uBkLNqVVqgfLUdT10+5LtHmOK+mWk6PHsi5QU62VVmu3kAPuk2CjZTfqMAAIj7BIjAKEnKTZKi27soz37Dqu4pEKpyTHKaNfW7LAABCESIwAhI6NdWxIiAF5hrjQAAAADiREAAICBxAgAAMBAYgQAAGAgMQIAADCQGAEAABhIjAAAAAwkRgAAAAYSIwAAAAOJEQAAgIHECAAAwEBiBAAAYCAxAgAAMJAYAQAAGEiMAAAADCRGAAAABhIjAAAAA4kRAACAgcQIAADAQGIEAABgIDECAAAwkBgBAAAYSIwAAAAMkWYHACD07dl3WMUlFUpNjlFGu7ZmhwMADSIxAsJASdkxU7ZbWlGpyUt3alPRQfeyPmlJmjkmU4kxUQGPJzmudcC3CSC4kBgBhorKKrNDaBKns0rHjp+I1+6yNek9PWas9nNU9Wtlk9q2sevJa7qrV1qithSV6t6lH2rY3LdV7Qp8PLvvG978N1VWKcZ4WFFZJXuQHCeNiYni9A/Uh28GYLhwWr7ZITRDpCZtLjQ7iEZVu6RZY7poVNcOkqRRXTvIJZcmLN5uSjwt+RlHVx7VR8bjvrPX6UhUG98GZZLi2aPMDgGwJAZfA/CrXmmJHs97pyWZFAkANI4eI8DQosssJnA6ncrPX6Xhw4fJbrc36T1m9oZtKSp19xhJ0uZa440CrUU/4/Jyae6JhxvvHiB7QoJPYwJgLSRGgCFYxlw4bS61jjgRr93etJi3Thni56hO+mx/mb4sPaIfJEbr4VX/1dTlO+WSS73TkrS56KCmLd+lPmlJmn9t94DFVKNFP2PnyffEREXKHiTHCYCWCbtv+IIFC5STk+N+Pm7cOC1ZsiRg22/fvr327dvnfl5UVKTU1NSAbR+hy6zKsxr1VaB1Py9BaSkxHmOKaqrSAo2KNABNEXaJUY2srCw5HA5lZp48QX/66adatGiRtm3bpq1bt+qbb75Rx44dVVxcXG8b+/bt0/33368tW7aouLhYhw4d0plnnqkLLrhAv/vd7zRmzBjZbJ5VQxMnTlRZWZmWLVumHTt2+PMjhqVgqSzzRkNVaWZVntVoqALt8FGnx3qbig5qyKNvBzy+Fl8qDeKqtGDpBQWsJGy/NaNHj9b48eM9lq1fv17Tp09XRESEOnfurL179562jS+//FJ/+9vf1LdvX40ZM0ZJSUn69ttv9dprr2ns2LG66aab9Je//MXjPRMnTpQkFRcXkxj5QXBVlnnDelVpVqtAO1VLj41grkqj8gxovrBNjOrTv39/bdiwQd26dVN0dLTatDn9CbBbt24qLS1VRESEx/LDhw+rT58+evbZZ3XHHXfoxz/+sT/DBiyDCjQAwY7EqJZOnTqpU6dOTV6/oYqgtm3basSIEfroo4/0ySefkBgFULBUlnmjoao0K/SWWakC7VQtPjaoSgPCComRHxw9elSFhYWy2Ww+T4qcTmfjKwVQTTxWicvetBtBBzejKs1uc8luO3n76I13DzQvJkm3LdlRTwXaTp1/VpymX9lZaSmxpsZXe181S633nbrPrc4q38uWstr5JRyE+j5vyi1OSIx84Ntvv9X8+fNVXV2tb7/9VitWrNCXX36p3Nxcpaen+3RbK1as8Gl7vlJQUGB2CGGnsX1eFuDz2pB4qfRghMeYolY26WC5U1c/u0XpZ7j0i7Tjim3arZf8Kq4ZMUQcParLjceFhYU63sgldvge55fAC9V9npWV1eg6JEY+8O2332r69Onu53a7XQ899JDuuusun29r5MiRPm/TG06nUwUFBRo6dGiTbzboa+FQiVab01mlwsJCDR48+LT3Mep2v3mDs22SYltHas7Yrh4VarP/7TRljrRT7Zg6uOkrl5e7H/a9ZIDsCfF+iMg/gr0qzQrnl3DDPicx8onMzEy5XC4dP35cX375pV588UVNnjxZ7733nl5++WVFRvpuN1v1QLXb7abF1m3qKlO2a65IaXPgS96byiVpztiulq1Qa07SWLsqrd8j71KVZgIzzy/hKpz3OXOl+VBERIRSU1N1zz33aMaMGVq6dGmdcn0gXFChBiAY0WPkJ8OGDdOkSZO0du1a3XLLLWaHE9LCoRKttqbOlWZ2lVrIVKhRlQaEFRIjP/nmm28kWffSVygJ9nEUzdXUudICOT/aqW59YVudCrWpy3aq27nxem58L9PiqtGsY4a50oCwwjfcCzt27NCFF15YJ/k5ePCg7r33XknWGyyN0GX2XGm1zRyTqclLd9apUNvx1Xe69YVtmjkmU4kxUQGNibnSADQFiVEtBw4ccE/ZIZ24ZHHgwAGPqUMefvhhpaSkSJLmzp2r119/XRdffLHOO+88RUdH6/PPP9cbb7yh8vJy/fznP9fVV18d6I8RdsKxKs2Kc6XVxyYpOipCdw49X1c6znZXpw2b+3bAq9PCYa60cOs9BfyBb1EtZWVlWrhwocey8vJyj2V5eXnuxOj6669XdXW1Nm3apLfeektHjhxRcnKy+vfvrxtuuEHjxo0LaPzhyuyxNOaw3lxp9XFJeuiqbpaoTguHudJCpQoNMBOJUS2pqalyuZr+Z+yll16qSy+91I8RAcGP6jQAwSRsE6OcnBzl5ORo3LhxWrJkScC22759e+3bty9g2wsHVKWdYNWeM6tUpzFXGoCmCLvEyOFwKDc31/08MzMzoNufOHGiysrK3M8TOMl6LdzGVTRUlWZmFVpD6qtOm7Z8l/qkJWn+td0DGkuLjxOq0oCwEnbfcIfDIYfDYdr2aw/uBnzJilVXT13XQ7cv2e4xpqhfRooez75ISbGBrUoDgKYIu8QIQOAkxUZp0Y19tGffYRWXVCg1OUYZ7dqaHRYANIjECIDfZbRrS0IEICgwVxoAAICBxAgAAMBAYgQAAGAgMQIAADCQGAEAABhIjAAAAAwkRgAAAAYSIwAAAAOJEQAAgIHECAAAwEBiBAAAYCAxAgAAMJAYAQAAGEiMAAAADCRGAAAABhIjAAAAA4kRAACAgcQIAADAQGIEAABgIDECAAAwkBgBAAAYSIwAAAAMJEYAAAAGEiMAAABDpNkBAEAw2rPvsIpLKpSaHKOMdm3NDgeAj5AYAQgqJWXHArvB8mNKNh4eLK/U4crDmrx0pzYVHXSv0ictSTPHZCoxJiqwsRmS41qbsl0gFJEYAUGkorJKTmeVjh0/8djuspkdUsD1mLE6oNuLrjyqj4zHAx9Zr2Ot26htG7uevKa7eqUlaktRqe5d+qGGzX1b1a6Ahua2+77h5mzYzwJ9rMdE8SsRJEZAULlwWr7xKFKTNheaGku4qnZJs8Z00aiuHSRJo7p2kEsuTVi83bSYTh4XoShwx3rx7FEB2Q6sjcHXANBMvdISPZ73TksyKRIAvkaPERBEdt83XE6nU/n5qzR8+DDZ7XazQwo4K/SObCkqdfcYSdLmWuONzBC6l9LC+1iHOcIuMVqwYIFycnLcz8eNG6clS5YEbPvt27fXvn373M+LioqUmpoasO0juMVERcppc6l1xInHdnvYfYW1dcqQwG6wvFyae+Lh2rv66bbXP9XU5Tvlkku905K0ueigpi3fpT5pSZp/bffAxmYI1bEx4X6swxxhe6RlZWXJ4XAoMzPTvezTTz/VokWLtG3bNm3dulXffPONOnbsqOLi4ia3e8stt+jpp5+WJP3vf/9T+/btPV6fOHGiysrKtGzZMu3YscMnnwVA4EwacYFuXPi+x5iihBi7Jo24wLSYTq3Uo0oNaLmwTYxGjx6t8ePHeyxbv369pk+froiICHXu3Fl79+5tVpsFBQV6+umnFRsbq/Ly8nrXmThxoiSpuLiYxAg+U1FZZXYIAWOVqrQpozorIcauQxVOzSv8RD9/eoNpVWmnCpVLa/6sSgvVXjZ4jyOjlv79+2vDhg3q1q2boqOj1aZNmya/97vvvtOvfvUrXXXVVdq/f7/WrVvnx0gBT1YYdxMuTq1Kk6T28W1MrUo7VWgdD/6pSqMCDQ2hKq2WTp06qW/fvoqOjm72e2+//XYdOXJETz75pB8iA2AlVKUBoYseIx947bXXtHDhQi1evFhnnXWW2eEgDIXKpZOmsEJviNWq0k4VKscDVWkwA4mRl0pKSnTzzTdr9OjRuvrqq/2+PafT6fdtNEdNPFaLK5TVt8/tYXQD7I13Dwzo9my1qtJW39ZX/7fyc01d/mGdqrTeqYl6IrtbQGNriN1mkcFO3jKq0uw2l88/E+es+oX6Ob0pCTaJkZduvfVWVVZW6qmnngrI9lasWBGQ7TRXQUGB2SGEnXDZ52Umn58jjh5VtvE4/613tP9ArA5V2DzGFHVq69KQ+AqtWR3YgeH1iQvBjpVwOdatJFT3eVZWVqPrkBh54aWXXtLLL7+sv/3tb3XK8v1l5MiRAdlOUzmdThUUFGjo0KF0dTdTSyvJnM4qFRYWavDgwWFxb5du95s79Ul0ZaQ7MXpkZ6Qiz4jSvKu7KDnOrrc+3q8XNn2h4rIqzdphjZ/FjqmDzQ7BZ3xxrFN91jyc00mMWuzgwYP63e9+p1GjRun6668P2HateqDa7XbLxmZV3aau8uLdkdLmt30WC5rm1Iq0vp1S1OXceEtVpJmdSPqed8c61WctE87ndBKjFvriiy9UUlKiN954QzZb/QM8OnQ4cfLcvn27HA5HAKMD4C9UpAGhjcSohZKTk3XjjTfW+9obb7yhvXv36pprrlF0dLSSk5MDHB2CQUsrh8KtUscKVWi1UZEWOOF2rMMaSIxa6Ac/+IGeffbZel8bOHCg9u7dq0ceeSRgY48QfFo69iHc5o8K+Nxop6pVldazY0Kj86R9tr9MX5Ye0Q8So9XpzLiAhxtKY2rC7ViHNXCk1XLgwAH3lB3Sib9WDhw44DF1yMMPP6yUlBQTogPCU2Pzfp06T5g/TRl1gaat+dJjTFGftCTNHJOp0opKTV66U5tq9SDVvJYYExWwGOvbH8ydBjQdiVEtZWVlWrhwocey8vJyj2V5eXkkRggK4TJ/mr/nTqs9V9ro+Zt0JMpzqqBNRQc15NG31comtW1j15PXdFevtERtKSrVvUs/1LC5b5s+h1qwXl7z51xpgRBKvXfhhJ9aLampqXK5vD+DrV271vtgAC9ZbWxOqDu1Ym1U1w5yyWWJirXgPhb8M1daIFARF5zCdq60nJwc2Ww2ZWdnN76yD7Vv3142m61OzxSA4EfFGhD8wq7HyOFwKDc31/08MzMzoNufOHGiysrK3M8TEhICun2Ej2C9fNJcVuoNsWrFWrAeC1SlwQxhmRiZeU+h2oO7AX8Kl/ENfq9aq1WVtvaufoqMj693tVtf2NZoxZpZgvVYoCoNZuBIAxDU/F5xZTs5iD0pNkr2Brb31HU9dPuS7R5jivplpOjx7IuUFBu4qjQA3iExAgAfSIqN0qIb+2jPvsMqLqlQanKMMtq1NTssAM1EYgQAPpTRri0JERDEwrYqDQAA4FQkRgAAAAYSIwAAAAOJEQAAgIHECAAAwEBiBAAAYCAxAgAAMJAYAQAAGEiMAAAADCRGAAAABhIjAAAAA4kRAACAgcQIAADAQGIEAABgIDECAAAwkBgBAAAYSIwAAAAMJEYAAAAGEiMAAAADiREAAICBxAgAAMBAYgQAAGAgMQIAADBEmh0AAMD39uw7rOKSCqUmxyijXVuzwwGCBokRAPhASdkxs0OQJJVWVGry0p3aVHTQvaxPWpJmjslUYkyUiZE1LDmutdkhAG4kRgB8pqKyyuwQfK+ySjHGw4rKKtkb+Iw9ZqwOXEyn0comtW1j15PXdFevtERtKSrVvUs/1LC5b6vaZXZ09dt93/B6lzudVTp23NjvLluAozJPTBS/ms3E3gfgMxdOyzc7BJ+Lrjyqj4zHfWev05GoNqbG05hqlzRrTBeN6tpBkjSqawe55NKExdtNjqxhpz9uIjVpc2HAYrGC4tmjzA4hrDH4GgBCTK+0RI/nvdOSTIoECD70GAHwmYYuiQS18nJp7omHG+8eIHtCQr2rWam3bEtRqbvHSJI21xpvZEUNX0pzKj9/lYYPHya73R7gqBCuSIwA+ExIjo1wnvxMMVGRsjfwGbdOGRKoiE7r1he2aerynXLJpd5pSdpcdFBTl+1Ut3Pj9dz4XmaHV6+GjhunzaXWEcZ+t4fgsQVLCrtLaQsWLJDNZnP/y87ODuj2+/bt67H9tWvXBnT7APzDKpVVM8dkKuOsOE1YvF29Z67RhMXb9d0Rp3Z89Z1ufWGbSisqzQ5RyXGtPf4BVhK2KXhWVpYcDocyMzPdyz799FMtWrRI27Zt09atW/XNN9+oY8eOKi4ubrAdm63hSokbbrhBCxYs8Fh20003acSIEVq7dq3WrVvn7ccAgkpQVq01sSpNsk5lmiTZJEVHRejOoefrSsfZlqpOa+ol13CtSmuKkOydtYiw3bOjR4/W+PHjPZatX79e06dPV0REhDp37qy9e/c2qa2OHTvWaUuSHA5HnWU33XSTJCkvL4/ECGHHSuNwmirYqtJquCQ9dFU3S1anNe84CL+qtKagcs1/wjYxqk///v21YcMGdevWTdHR0WrTpmknwNTUVOXl5fk3OABoJqrTgOYjMaqlU6dO6tSpk9lhACErKKvWmliVJlmvR8yq1WlNv5RGVRoCj8TIBw4dOqQ///nPOnDggJKSknTxxRerS5cuftmW0+n0S7stVROP1eIKZcG8z+3BOEzEdnJAjt3mkt3W8ACdjXcPDEBATXPzom2asuxDj+q0act3qXdqop7I7mZqbKfbhx6MqrTG9ns48tf3P5jPL03RlASbxMgHduzYod/85jcey0aMGKGFCxfqrLPO8um2VqxY4dP2fKWgoMDsEMIO+zwwIo4e1eXG48LCQh2v5xJ7mYV+h5Q7pZeLIvTJ9za1ssljTFHGGS4Nia/QmtXWGSR+qrh6fm9xrAdeqO7zrKysRtchMfLSXXfdpbFjx+r8889XVFSUdu7cqfvvv19vvvmmLr/8cm3YsEERERE+297IkSN91pYvOJ1OFRQUaOjQoXR1B4jV9nlQVpo1R3m5+2HfSwbInhBfZ5Vu91tncPDJudL+v717j4uyzvs//h5hQDkoJxU7CZSpiUqe2w4mqZi2N1oabEfpcNd613pvy69cS8VK00e2Hax1d2tN8xBbuepmlmJ4qkxLzbSyNYPsLnXDPAEJg8zvDy9GRkCBOVxzeD0fDx8x18xc14dvF8Oba76f+XZX3+RY/euzH/Wngn/rl8qT2nPMouk7fPtlf8ekdMfXNluVCgsLlZ6ezucYuaApHWy+9vpiBs40F82aNcvp9hVXXKEVK1YoPT1d69ev1/Lly3XjjTe67Xi+eqJarVafrS1Q+cqY95y02uwSPKp2V9rVz3zo811pZ66Vds/VKUps09InutEao27IDJW2bDCllkDRnA42X3l9MUPQfcCjN7Ro0UL33nuvJOnDDz80uRoAwYZuNKD5uGLkIQkJCZKkslqX4YFA5JedZk3RiK40utHcp/b5RFcazEAw8pDNmzdLOvUZR0AgC/hP4G3EWmm+sk6aVP9aaZOXf6H+yXH68629zC7vnGqfT6yVBjNwprlg586d6tKlS52/ZD766CPNnDlTVqtVY8aMMak6AN5ytvW+DpVWeLGSU2ulPbLkc6c5RS0sku1ktQ6XVyo2Isyr9dTGumjwBwSjWkpKSpSbm+u4bbPZVFJS4rTcx6xZsxxvkz3zzDN65513dNVVV+nCCy+U1WrVF198odWrV8tiseill17SxRdf7O1vA/C4gO9Eq60Ja6XVx4z101pYpKjwUN3a/yIN6tJWh0ptPrFOWlPfdg2ktdIC/spqAOH/VC2lpaWaP3++07aysjKnbXl5eY5glJmZqSNHjmjHjh0qKChQZWWlEhMTlZ2drf/93/9Vv379vFo/4C2+NqfGk/xxrbRquzTzph5O84x8YZ205p03gbFWGmub+Q+CUS1JSUmy2xv/59SoUaM0atQoD1YEAM1DZxrQPEEbjHJycpSTk6OsrCzl5+d77bgDBgxwTMwG/FXAd6LV1oS10upj1tU1X+xMa/pbaXSlwfuCLhilpaVpypQpjtupqalePf4999yjYcOGOW7TtQZ/FFTzJRrRlXY2ZnSs+WpnWlPPG7rSYIagO9PS0tKUlpZm2vHvuece044NwPvM6MSac1tvjc/f7jSn6OpOCXo++3LFRZrXlQb4g6ALRgAQ6OIiw7Tg7v7ac/C4ig+VKyk+Qp3aR5tdFuAXCEYAEKA6tY8mEAFNxFppAAAABoIRAACAgWAEAABgIBgBAAAYCEYAAAAGghEAAICBYAQAAGAgGAEAABgIRgAAAAaCEQAAgIFgBAAAYCAYAQAAGAhGAAAABoIRAACAgWAEAABgIBgBAAAYCEYAAAAGghEAAICBYAQAAGAgGAEAABgIRgAAAAaCEQAAgIFgBAAAYAg1uwAAgWfPweMqPlSupPgIdWofbXY5ANBoBCMgQBwqrTC7BB0ur9SjS3dpc9HPjm39k+M0bVSqYiPCTKkpPirclOMC8E8EI/iM8soqs0vwCzZblSpOnhovq93i2N77yTUmVnVKC4sU3dKql27ppb7Jsfqk6LAmLt2poc9uULXdnJq+fDzDtR1UVinC+LK8skpWk87TiDBergFv4CcNPuOyyavMLsGPhOrhLYVmF1FHtV2aPqq7RvToIEka0aOD7LLrgcXbTavJ1fOqVeUJfWV8PWDGev0S1tL1opqheMYIU44LBBsmXwNwq77JsU63+yXHmVQJADQdV4zgM1x+yyNI2Gw2rVq1WhkZQ2W1Wh3bfeWK2ydFhx1XjCRpS635RmZw+bwqK5OePfXlxxMGyhoT43JNAHwXwQg+gzkUjWOz2BUecmq8rNbTY7b1scEmVnXKuEXbNGn5LtllV7/kOG0p+lmTl3+h/slx+vOtvUypyeXzynb6+RFhobJyngIBLejeSps3b54sFovjX3Z2tlePn5iY6HT84uJirx4fgckXOtIk6eFhnVVtPzWnqN+09/XA4u2qttv18LDOXq0jPirc8Q8AmiJo//TJzMxUWlqaUlNTHdv27t2rBQsWaNu2bdq6dat+/PFHdezY8Zzhpbq6WvPmzdPcuXO1a9cuVVZW6oILLtCVV16pF154QdHRpz/HJTc3V6WlpVq2bJl27NjhqW8vaAVDZ1t9XWm+0JEmne5Ke2xEV8VEWHWk3KbZhd9ozF82ebUrza1vy/pIV5oruBoLNF7Q/rSMHDlSY8eOddq2ceNGTZ06VSEhIeratasOHDhwzv1UVFRo9OjRWrFihXr06KGxY8cqPDxc+/bt08qVK/XEE0/UCUaSVFxcTDDyAF+ZZ+N5/tGVJkmJbVp6vSvNneeBr3SluYKONqDxgjYY1eeaa67Rpk2b1LNnT7Vq1UotW577BXDChAlasWKFZsyYoUceecTpvurqak+VCvgsutIA+DOCUS0pKSlKSUlp9ON/+OEHvfjii7r66qvrhCJJatEi6KZwmS4YOtvq60rzpStlvtCV5tbzgK40IKgQjFzw1ltvqaqqSmPGjNHx48f1r3/9S/v27VP79u2VkZGh888/3+3HtNlsbt+nK2rq8ZW6rJZzP8bvGV1pVotdVsupiTsfT7jW3JoMv8vfUW9XWr+kWL2Q3dNrddSMi1vU2lftMfcnvvLz2VS+9voSDAJ9zGt/xElDCEYu2Lp1qyTpyJEj6ty5s/bv3++4LywsTDNmzNDvf/97tx5z5cqVbt2fuxQUFJhdQtDxxTHPTJAWHAlxmlPUJcauzIRybV7vGxPEmyrkxAndYHxdWFiok414ix3u5YvneqAL1DHPzMw852MIRi74z3/+I0maOnWqhgwZojVr1ujCCy/Uhg0b9N///d966KGH1KVLF11//fVuO+bw4cPdti93sNlsKigo0JAhQxqVxOG62mN+rNK3rl4cKa/U8pKvpCOHHdtax8Sp96+6KsakRWRrxEc28/hlZY4v09PTeSvNi3h98T7GnGDkkprJ1e3atdOSJUsUEXGqqXfEiBF65ZVXNHz4cD3zzDNuDUa+eqJarVaP1hYMbfiNZbNbVHHy1H8HzFhrdjlOGlpEdvjsj0xbRLZGs+cd2S2qObNtdotk9+33awOxNd/Try+oK5jHPPB+gryoTZs2kqTBgwc7QlGNjIwMhYeH69NPPzWjtIDjS5OLfYN/tOv7wiKyNZp7Dvlbuz6t+YBraJtyQefOpz7NN6aeS+stWrRQdHS0fvnlFy9XBZiLdn0A/owrRi5IT0/XtGnT9OWXX9a576efflJJSYkuvfRSEyoLPMHQht9Ytdv1ez7he1eNfKFdvz7NPodo1weCCsHIBQMHDlTXrl31/vvvOyarSZLdbtfEiRMlSTfffLOZJQaMQJw30Vy1F5H1hYVja/PFRWRrNPscYhFZIKjwE15LSUmJY8kO6dRf5iUlJU5Lh8yaNUsJCQmSpJCQEL366qtKT0/X8OHDdeONN+qCCy7QBx98oC1btqhXr16aMGGCt78NwBSHyytlO1mtI+WVTnOKeneM0bRRqWd5puexmCyAxiIY1VJaWqr58+c7bSsrK3PalpeX5whGktS/f39t2bJFU6ZM0fvvv69jx47poosu0h//+EdNnDhRkZGRXqs/0NCJVr/ai8j2ftJ33kqr6Uib/Zteio+yau3un7Ro8z5t33dEg/+0wdTaXHor1k8WkeWqKuAe/CTVkpSUJLu96T3F3bp101tvveWBioIbnWhn43tdaWd2pA1ISVD3C9r4dUea5D9daXSjAe4RtF1pOTk5slgsys7O9upxExMTZbFY6lyZAgIBHWkA/F3QXTFKS0vTlClTHLdTU7079yE3N1elpaWO2/W1+uMUOtHq58tdaQHXkSbRlQYEmaAMRmlpaaYdv/bkbpwdcybq56tdaQHZkSbRlQYEGX7CAT/mS91Wc27rrfH5253mFF3dKUHPZ1+uuOauUwYAXkYwAuAWcZFhWnB3f+05eFzFh8qVFB+hTu2jzS4LAJqEYATArTq1jyYQAfBbQduVBgAAcCaCEQAAgIFgBAAAYCAYAQAAGAhGAAAABoIRAACAgWAEAABgIBgBAAAYCEYAAAAGghEAAICBYAQAAGAgGAEAABgIRgAAAAaCEQAAgIFgBAAAYCAYAQAAGAhGAAAABoIRAACAgWAEAABgIBgBAAAYCEYAAAAGghEAAICBYAQAAGAINbsAAEDw2XPwuIoPlSspPkKd2kebXQ7gQDACgCBzqLTCtGMfLq/Uo0t3aXPRz45t/ZPjNG1UqmIjwpwea6uqUqlNOlRWKWtotbdLlSTFR4WbclyYh2AEwO+VV1Z5bueVVYqodRyrJ4/lJb2fXGPasVtYpOiWVr10Sy/1TY7VJ0WHNXHpTg19doOq7fU9I1SPfrrOy1We9uXjGaYd2ww2W5UqThrnut1S5/6IsMCPDYH/HQIIeJdNXuWxfbeqPKGvjK8HzFivX8JaeuxYwaDaLk0f1V0jenSQJI3o0UF22fXA4u0mV1Y/T55bvitUD28prPee4hkjvFyL9zH5GgDgVX2TY51u90uOM6kSoC6uGAHwex59u6OsTHr21JcfTxgoa0yM547lJWZfBfmk6LDjipEkbak138jXBN9baTatWrVaGRlDZbVazS7HFAQjAH7Po/MebKf3HREWKmsAzLHY+thg0449btE2TVq+S3bZ1S85TluKftbk5V+of3Kccodequ8P/6ILY1sppW2UbFVVen/NGl03eLCsoeaMezDMqanNZrErPMQ4163B9b3XCLrvet68ecrJyXHczsrKUn5+vteOn5iYqIMHDzpuFxUVKSkpyWvHBwAzTRuVqkeX7nKaU9S7Y4xsJ6s15q8fO7b1T47T1F93MaNEJ7U7+OhQCw5BF4xqZGZmKi0tTampqY5te/fu1YIFC7Rt2zZt3bpVP/74ozp27Kji4uJ695GXl6epU6ee9Th33XWX/v73vztu5+bmqrS0VMuWLdOOHTvc8r0AcF2DnW10pXnc9n1H6u1UGz77I1Xbze1Kqy0Y3lY7V1eau/niFTnfq8hLRo4cqbFjxzpt27hxo6ZOnaqQkBB17dpVBw4cOOs+rr322gbve+WVV/TDDz8oI8P5Byk3N1eSVFxcTDACfEhD827oSvM8f+lUM3tulvc03JXmbr7Y5Ra0wag+11xzjTZt2qSePXuqVatWatny7C+A1157bb3h6ODBg5o2bZri4+M1cuRIzxQLAAGETjX4CoJRLSkpKUpJSXF5P/Pnz1dVVZVuv/12hYWFnfsJAEzX4NskdKV5hT90qgXHW2l0pRGMPKBmTtE999zj9n3bbDa379MVNfX4Wl2BjDH3DGtD0yks9lqPsctqqffjmf3KxxOuNbsESVJRSZn+7+df9NrmffV2qvXtGKORbUs0cOBAhfrAL+lA+H9/TkZXmrfOdW+/jjUm7BGM3Gzjxo3697//rQEDBqhbt25u3//KlSvdvk93KCgoMLuEoMOYe0fIiRO6wfi6sLBQJ8/xFruvKvWhHF1mk94oCtE3x06n0UirnOYUdWpt15CYcknS+vXrvV5jQ6LMz2deEaivL5mZmed8DMHIzTx5tUiShg8f7pH9NpfNZlNBQYGGDBkStJddvY0xd69zrrNWVub4csBVA2WNaePhijyj5xPemUzbGKfXS+vu1IVmsdlUc41izzGLpu/wvV9ROyalm12CR9lsVSosLFR6erpHP8fIF7vRavhuZX7o2LFjevPNNxUVFaWsrCyPHMNXfxFarVafrS1QMebu0XPS6rPeX7sr7epnPqQrzQ38pQutPr4UMD0nVNqywaNH8MVutBqsleZG+fn5Ki8vV1ZWlqKioswuBwB8Fl1o8FVcMXKjV155RZLn3kYD4H7n7DQKkK40X+tE84cutPoEemcaXWkEI7fZuXOnPvnkE3Xr1k0DBgwwuxwAjXTOuQ4Bslaameujnels66X9+dZe+vanUn1/+Bd1aB2mbz/bZOpaaWfy5bkx7sBaaQQjt6mZdH333XebXAkA1NXQOl+11wLzlvrWS+ufHKeHh3XWuEXbtLnW1aNLWoeo968q1ba1b/y6qhkv1k0LXL5xpvmIkpISx5Id0qlLiiUlJU5Lh8yaNUsJCQlOz6usrNTChQsVFhamO+64w1vlAnCDc3alBeBaabX5yrppm4t+1pi/bDrLmmlmV+gsUN9S8/ZaaQ0x88ocwaiW0tJSzZ8/32lbWVmZ07a8vLw6wWjZsmU6dOiQbr75ZsXHx3ulVgDuca65N6yV5j3+1K3ma3O23Mt7a6U1xMyuNYJRLUlJSbLbm/5nyc0336ybb77ZAxUBQHChWw1mC9pglJOTo5ycHGVlZSk/P99rx01MTNTBgwe9djwAZxcsXWkN8bUrH/7SrRa4b6XRlRZ0wSgtLU1Tpkxx3E5NTfXq8XNzc1VaWuq4HRNgL7KAvwmWrrSG+Hq32qRlu9QvKVZzbuttdnlOArU7ja60IA1GaWlpph2/9uRuADCbL3VXzbmtt8bnb3eaU9Qlxq7Z2T19qk4EtqALRgAA3xQXGaYFd/fXnoPHVXyoXOe3CdOeTzcoLjLM7NIQRAhGAACf0ql9tDq1j5bNZtMes4tB0GGtNAAAAAPBCAAAwEAwAgAAMBCMAAAADAQjAAAAA8EIAADAQDACAAAwEIwAAAAMBCMAAAADwQgAAMBAMAIAADAQjAAAAAwEIwAAAAPBCAAAwEAwAgAAMBCMAAAADAQjAAAAA8EIAADAQDACAAAwEIwAAAAMBCMAAAADwQgAAMBAMAIAADCEml0AAASjPQePq/hQuZLiI9SpfbTZ5QAwEIwAoJF+LqtUaGiFS/s4XF6pR5fu0uainx3b+ifHadqoVMVGhLlaokN8VLjb9gUEE4IRANOVV1aZXULDKqsUYXx57TMb9UtYS5d218IiRbe06qVbeqlvcqw+KTqsiUt3auizG1Rtd73cGl8+nuG+nXlIRBi/guB7OCsBmO6yyavMLqFBrSpP6Cs37q/aLk0f1V0jenSQJI3o0UF22fXA4u1uPIpvj2mN4hkjzC4BqIPJ1wDgZX2TY51u90uOM6kSAGfiihEA0/n02z5lZdKz7t3lJ0WHHVeMJGlLrflG7uLTYwr4MIIRANP59FwT2+na1v3haoW2aePS7sYt2qZJy3fJLrv6JcdpS9HPmrz8C/VPjtOfb+3larUOPj2mgA8LurfS5s2bJ4vF4viXnZ3t1eMnJiY6Hb+4uNirxwdgrmmjUpWcEKEHFm9Xv2nv64HF23WkvFK2k9U6XF7p8v7jo8LpSANcELR/UmRmZiotLU2pqamObXv37tWCBQu0bds2bd26VT/++KM6dux41vBSVVWl1157TS+//LK++eYbnThxQhdeeKFuuOEGPfTQQ0pMTHR6fG5urkpLS7Vs2TLt2LHDU98e4HN8uvPsbNzclSad6kyLCg/Vrf0v0qAubXWo1Oa2zrRAeQuNK14wS9CeeSNHjtTYsWOdtm3cuFFTp05VSEiIunbtqgMHDpxzP1lZWfrnP/+pSy65RNnZ2QoPD9fHH3+sp59+WgsXLtS2bducwlFubq4kqbi4mGCEoOIPXVL1cXdXmnSqM23mTT2c5hm5qzPNX8f5THSswSxBG4zqc80112jTpk3q2bOnWrVqpZYtz/6X4ZYtW/TPf/5T/fr10wcffCCr1eq4b/z48XrhhRf0t7/9TZMnT/Z06QD8DJ1pgG8iGNWSkpKilJSURj/+22+/lSQNHjzYKRRJ0g033KAXXnhBP/30k1trBPyV377F44GuNMlznWl+O86AjyAYuaBbt26SpDVr1igvL88pHK1YsUKSdN1117n1mDabza37c1VNPb5WVyDz1zG3WsyuoJkspyf9rPndAIXExLi8y9/l79Ck5TvrdKb1S4rVC9k9Xdq31eLGj882kc1m89tz3Z8F+pifeRGjPgQjF3Tv3l3jx4/X888/r8suu0zXX3+9wsPDtWnTJm3dulVTp07VyJEj3XrMlStXunV/7lJQUGB2CUGHMfesUuP3QsiJE6rpXd34wQc6eY632M+lzCb9VBKiI+UWpzlFKdF2DW5TrvfXrHFp/2eKOvfvAZ/Hue59gTrmmZmZ53wMwchFzz33nJKTk/X//t//0+zZsx3bf/3rX+vGG290+/GGDx/u9n26wmazqaCgQEOGDGlUEofr/GnM/bYTTVLPJwolSa0qQx3BaOq2UP3iYrdUzVpps3/TXfFRVq3d/ZMWbd6n4tIqTd/h/pfkHZPS3b5Pd2hM15k/neuBgjEnGLmkurpa999/v15//XXNnj1bmZmZioiI0Icffqjf/e53GjBggNauXau+ffu67Zi+eqJarVafrS1Q+cOY95y02uwSfM6Za6UNSElQ9wvauH2ttBo1Ac/XNKXrzB/O9UATzGMedB/w6E5z587Vyy+/rGnTpum+++5TYmKiWrdureuvv15vvfWWysrKNHHiRLPLBOBj6EgDfBdXjFzw7rvvSpIGDRpU576ePXsqNjZW27d75q9AwB/4c4eUJz8PyBtrpdXw5/8HgBkIRi6orDz18f31teRXVFTo+PHjateunbfLAnyGP3968dbHBp/6ola7vj+tlVbDn/8fAGbgJ8YFV155pVasWKHp06fryiuvVHj46fWJ8vLyVFVVVe/VJAC+z7HemMW9E8injUrVI0s+d5pT1MIix1ppsRFhbjkO66UBzUMwqqWkpMSxZId0anZ+SUmJ09Ihs2bNUkJCgiRp3Lhxmj9/vt5//3116dJFw4YNU6tWrfThhx9qy5Ytatu2rR5//HFvfxuAz/DnrjQHP1srrYa/vIXGFS34Gs7IWkpLSzV//nynbWVlZU7b8vLyHMGodevW+vjjjzVz5kwtX75c8+bN08mTJ3XBBRfo/vvv16OPPqoLLrjAq98D4EsCYd0uf1srrYa/jD1rosHXEIxqSUpKkt3etD/X2rRpo+nTp2v69OkeqgpAIKIzDfBNQRuMcnJylJOTo6ysLOXn53vtuImJiTp48KDXjgeYyV/ezjkrP1srrUZAjD1ggqALRmlpaZoyZYrjdmpqqlePn5ubq9LSUsftGDesuwT4qoCYP2I7/T24oytN8k5nWkCMPWCCoPvJSUtLU1pammnHrz25G4B/iYsMk9UN3V5zbuut8fnbneYUXd0pQc9nX664SPd0pQFonqALRgBgtrjIMC24u7/2HDyu4kPlSoqPUKf20WaXBUAEIwAwTaf20QQiwMewVhoAAICBYAQAAGAgGAEAABgIRgAAAAaCEQAAgIFgBAAAYCAYAQAAGAhGAAAABoIRAACAgWAEAABgIBgBAAAYCEYAAAAGghEAAICBYAQAAGAgGAEAABgIRgAAAAaCEQAAgIFgBAAAYCAYAQAAGAhGAAAABoIRAACAgWAEAABgIBgBAAAYCEYAAACGULMLAPzRnoPHVXyoXEnxEerUPtrscgAAbkIwQlA5VFrh0vMPl1fq0aW7tLnoZ8e2/slxmjYqVbERYc3eb3xUuEt1AQDcg2AEjymvrDK7hDp6P7nGpee3sEjRLa166ZZe6pscq0+KDmvi0p0a+uwGVdubv98vH89o9GNttipVnDw1vla7pfkHPYeIMF4eAAQfXvngMZdNXmV2CW5XbZemj+quET06SJJG9Oggu+x6YPF2l/bb9LEK1cNbCl065rkUzxjh0f0DgC9i8jXQRH2TY51u90uOM6kSAIC7ccUIHtOUt4e8xR1XsT4pOuy4YiRJW2rNN2qupr2VZtOqVauVkTFUVqvV5WMDAE4LumA0b9485eTkOG5nZWUpPz/fa8dPTEzUwYMHHbeLioqUlJTkteN7ky/OUdn62GCXnj9u0TZNWr5LdtnVLzlOW4p+1uTlX6h/cpz+fGuvZu+3KWNls9gVHnLqOVar740xAPizoH1VzczMVFpamlJTUx3b9u7dqwULFmjbtm3aunWrfvzxR3Xs2FHFxcUN7ufEiRN6+umn9frrr+vbb79Vq1atNGDAAD322GO68sor6zw+NzdXpaWlWrZsmXbs2OGJbw1ncLUTrbZpo1L1yJLPneYUtbBItpPVOlxe2ezOtEOlFXSmAYAPCNpgNHLkSI0dO9Zp28aNGzV16lSFhISoa9euOnDgwFn3ceLECV133XX66KOP1KNHD/32t7/VkSNHtGTJEg0cOFBLlixRZmam03Nyc3MlScXFxX4fjMorq7zWIeUKVzvRztTCIkWFh+rW/hdpUJe2OlRq82pnmqfH3Bev9AGAt/AKWMs111yjTZs2qWfPnmrVqpVatmx51se/+OKL+uijjzRmzBi9/vrrCgkJkSQ99thj6tWrl+69916lp6crOjowPwDw9Hwdz3dI+ZJquzTzph5O84y835nmuTGnGw1AMKMrrZaUlBQNGDBArVq1atTjly9fLknKy8tzhCJJuvjii3XXXXfpp59+0ltvveWRWmEuOtMAIDBxxcgFNW+1JScn17mvZlthYaHTZO9A8uXjGX7RIeWJz1MyszPNH8YcAPwVwcgFCQkJ+uabb1RUVKTLLrvM6b6ioiJJ0r///W+3HtNms7l1f66wWiQZHVJWi11WiwsTbDzo4wnXunV/v8vfoUnLd9bpTOuXFKsXsns2e7+NHj8Pj7kvnWM+wWaT1fGlTWJ8vKbmXOSc9J5AH/PG/DFJMHLB9ddfr48//liPP/64Fi1a5Hg7raioSK+++qok6ciRI2495sqVK926P3cpKCgwu4SzKnXTz3iZTfqpJERHyi1Oc4pSou0a3KZc769p3kTvqGZc+PH1MQ8UISdO6Abj68LCQp08x9xDuB/nuvcF6pif2RBVH4KRC37/+9/rH//4h/7xj39o9+7dSk9Pd3SlJSUl6fPPP1eLFu6dxjV8+HC37q+pzlz/zGarUmFhodLT0336M3V6PuGeico1a6XN/k13xUdZtXb3T1q0eZ+KS6s0fUfzv/8dk9Ib/VhPjTndaA0oK3N8mZ6eLmtMjHm1BBmbzaaCggINGTKEt429hDEnGLkkOjpaH374oR5//HEtXbpUL774otq1a6f7779fN9xwg6655hq1a9fOrcc0+0TtOWl1PVtDpS0bvF6LGc5cK21ASoK6X9DG5Y60pgc394853WgNqPUzZ7VaTf8ZDEaMu/cF85gTjFwUExOjP/3pT/rTn/7ktH3evHmSpD59+phQFTyJjjQACFwEIw9ZtGiRJCk7O9vkStzrzM4pf+mQcmdnGmulAUDgIhi56NixY2rdurXTtmeffVZr1qzRqFGj1LdvX5Mq84wz56H4y7pdrq6RVoO10gAgsPGqWktJSYljyQ7p1F/mJSUlTkuHzJo1SwkJCY7b559/vgYNGqROnTrJYrFo3bp12rp1q/r06aO///3v3iwfZxEfFe6WNdMeHtZZd8//1GlOUUyEVQ8P6+zSflkrDQB8A8GoltLSUs2fP99pW1lZmdO2vLw8p2B02223ae3atXr//fdlsVh06aWX6umnn9aDDz6o8PDg/kV3Zgeb2dyxZlpNV9pjI7oqJsKqI+U2zS78RmP+ssmlddIk89dKoysNAAhGTpKSkmS3N+2325w5czxUjf/zxCdOm+3MrjRJSmzT0uWuNMn8tdLoSgOAIF4rLScnRxaLxeuToxMTE2WxWOpcmYL/oCsNAAJX0F0xSktL05QpUxy3U1NTvXr83NxclZaWOm7HBPCHxTWl08ob3HUFyxNdaRJrpQGALwjKYJSWlmba8WtP7g50vjZnxR2daZ7qSpMaP150pQGA5/CqiqDhjq6vObf11vj87U5ziq7ulKDnsy9XXGSYy/sHAJiLYAQ0QVxkmBbc3V97Dh5X8aFyJcVHqFP7aLPLAgC4CcEIaIZO7aMJRAAQgIK2Kw0AAOBMBCMAAAADwQgAAMBAMAIAADAQjAAAAAwEIwAAAAPBCAAAwEAwAgAAMBCMAAAADAQjAAAAA8EIAADAQDACAAAwEIwAAAAMBCMAAAADwQgAAMBAMAIAADAQjAAAAAwEIwAAAAPBCAAAwEAwAgAAMBCMAAAADAQjAAAAA8EIAADAQDACAAAwEIwAAAAMBCMAAABDqNkFAAD8356Dx1V8qFxJ8RHq1D7a7HKAZiMYAQDqdai04pyPOVxeqUeX7tLmop8d2/onx2naqFTFRoQ1+ljxUeHNqhFwN4IRAASI8soqt+6v95NrzvmYFhYpuqVVL93SS32TY/VJ0WFNXLpTQ5/doGp744/15eMZdbbZbFWqOHnq+7LaLU0pvUERYfzaw9lxhgBAgLhs8iqvH7PaLk0f1V0jenSQJI3o0UF22fXA4u1N2k/DtYfq4S2FLlZ5WvGMEW7bFwITk68BAC7pmxzrdLtfcpxJlQCu44oRAASI+t6OckVjr0B9UnTYccVIkrbUmm/UWPW/lWbTqlWrlZExVFartcn7BJojYIKRxWLRwIEDtW7dOrNLAQBTuHv+zNbHBp/zMeMWbdOk5btkl139kuO0pehnTV7+hTq3j9aTI7sppW1Uo45VX+02i13hIafus1oD5tcVfBxnGgCgXvFR4efsTJs2KlWPLt3lNKeohUX6uaxSY/76caM71Gofhw41mClggtFXX32liIgIs8sAAFOZ0ZlWwyIpMjxUM2/q4ZYONU90pTWEbjXUCJgzoUuXLmaXAACmM6MzrYZd0syberi5Q829XWkNoVsNNfyiK23JkiUaOHCg2rVrp5YtW+q8887T4MGDtWTJEsdjLBaLrr322jrPLS4uVlZWluLi4hQVFaWBAwdqw4YNysvLk8VicZqTtG7dOlksFuXl5emjjz7SoEGDFB0drbZt22rcuHH65ZdfJEnvvPOOrrjiCkVGRqp9+/Z6+OGHVVXl/Ffa0aNHNXPmTA0cOFDnnXeewsLCdN555+mOO+7Q3r17PTJOAGA2OtTg73z+itGcOXM0btw4dejQQaNGjVJ8fLwOHDigLVu2aOnSpbrpppsafO4PP/ygX/3qV9q/f7+GDRumyy+/XF9//bWGDBmi9PT0Bp+3efNmzZw5UxkZGbrvvvu0du1azZkzR8eOHdOvf/1rjR07VpmZmbriiiv0zjvv6Omnn1ZUVJQmT57s2MdXX32lyZMna9CgQRo1apQiIyO1e/duLV68WO+88462bdumjh07unWsAMCszrQa7uxQoysNZvD5YPTKK68oLCxMn332mdq1a+d036FDh8763AkTJmj//v2aNm2aJk6c6Ng+d+5c3X333Q0+77333tOyZcuUmZkp6dQPZ58+fbR48WKtWrVKGzZsUN++fSVJU6dO1SWXXKLnn39ef/zjHx0/vF27dtX+/fsVF+f819LatWs1ePBgPfnkk3r55ZcbPxAGm83W5Od4Uk09vlZXIGPMvcxmk9XxpU3y8XG3unkqzscTrm30Y3+Xv0OTlu+s06HWLylWL2T3bPR+rBZjQpLRlWa12E9v8xB+nk4J9NeXxgRsi91u9+zZ5qLevXvr66+/1vfff6/Y2NgGH3dmu35FRYXatGmjNm3aaN++fQoPP93lYLfb1bVrV3399ddau3at4y24devWadCgQRo0aJAKC53f037iiSc0efJk5eTkaO7cuU733X333Zo7d66+/fZbJScnn/N76tGjh44fP66ioqJGjsJpy5cvb/JzADRfyIkTuiE7W5K0Ij9fJ1u2NLki7yltwu/GMpv0+t4QfVdmcZponRJtV3bKSUU244JPFBeJ4GY1FzzOxuevGGVnZ+vhhx9WamqqbrnlFg0aNEhXXXWVWrdufdbnff3116qoqFCfPn2cQpF0KkT96le/0tdff13vc9PS0ups69Chwznv+/HHH52C0bp16/Tcc89p8+bNKikpcZqHFBbW+MUVaxs+fHiznucpNptNBQUFGjJkCJe6vYQx97KyMseX6enpssbEmFdLI7izK63nE42f9FyzZtrs33RXfJRVa3f/pEWb96m4tErTdzTvV82nE65RYWHhqXH30OcY0Y3mjNcXPwhGubm5io+P15w5c/TMM89o1qxZCg0N1YgRI/Tss882eIXm2LFjklTn7bca7du3b/CY9YWu0NDQc95X+9Ljm2++qaysLEVFRSkjI0NJSUmKiIiQxWLRvHnz9N133zV4/LPx1RPVarX6bG2BijH3klpj7A9j3nPSalOOe+aaaQNSEtT9gjZN7kirrc+MDZJCpS0b3FRlXXSj1c8fznVP8flgZLFYdNddd+muu+7SoUOHtHHjRr3++ut64403tGfPHn3++ecKCQmp87yaAPOf//yn3v0ePHjQo3Xn5eWpZcuW2rp1qzp16uR0X35+vkePDQBmoCMNgcDng1Ft8fHxGjlypEaOHKmSkhIVFhbqm2++UefOnes8tnPnzgoPD9fWrVtVUVFRZ47Rpk2bPFrr3r171a1btzqhaP/+/fr22289emwAwcudXWlmdKTVtmNSOl1p8DqfD0br1q3TwIEDZbGcbrWw2Wz6+edTP3AtG5gIGR4ertGjR2vRokV67rnn9Mgjjzjue+2117R7926P1t2xY0d98803OnjwoONtuxMnTui3v/1twM72B2A+d86ZacxaaTUaWjOtf3Kc/nxrr2YdPyKsBWulwet8/kwbOXKkWrdurQEDBqhjx46OiWFffvmlRo8efdbPAnrqqae0Zs0aTZgwQevXr3d8jtGKFSs0bNgwvffee2rRwjOfcfnggw/qwQcf1OWXX67Ro0erqqpKBQUFstvt6tmzp3bs2OGR4wKAu9SsWXau9dIk6eFhnXX3/E+d5hTFRFj18LC6V/Qbe1z+iIQZfD4YPfXUU3rvvfe0ZcsWvf3224qMjNTFF1+sOXPmnPWziCTpwgsv1KZNm/TII49o9erVWr9+vXr37q3Vq1frzTfflFT/ZGp3+J//+R9ZrVbNnj1bL7/8smJiYjRixAg99dRTGjNmjEeOCQDuXitNatx6aTVdaY+N6KqYCKuOlNs0u/AbjfnLpiatkyaxVhrM5fOfY+QpV111lTZt2qSjR48qKirK7HL8ls1m08qVKzV8+HDmAHgJY+5lZWWS8RphO3zY59v1kya8Y9qxX7qll9McoxWf/+hSV5o30Z12Cq8vfrJWmiv2799fZ9vChQv14YcfavDgwYQiAGcXGSlbZaWWL1smRUaaXY1PoysNgSDgrx2mpqbq8ssv12WXXaaQkBB99tlnWrdunaKjozVr1iyzywMAt3L3WmlS47vT3NWVxlppMFPAB6P7779fb7/9tj799FOVlZWpbdu2uuWWWzRp0iR16dLF7PIAwK08MVemMd1p7uxKq/kebMZaaXSlwZsC/kybNm2apk2bZnYZAOC3arrEzmbObb01Pn+705yiqzsl6PnsyxUX2bwlkAAzBHwwAgB4XlxkmBbc3V97Dh5X8aFyJcVHqFP7aLPLApqMYAQAcJtO7aMJRPBrAd+VBgAA0FgEIwAAAAPBCAAAwEAwAgAAMBCMAAAADAQjAAAAA8EIAADAQDACAAAwEIwAAAAMBCMAAAADwQgAAMDAWml+xG636/jx42aX4cRms6m8vFzHjh2T1Wo1u5ygwJh7H2NuDsbd+4JhzKOjo2WxWBq8n2DkR44fP642bdqYXQYAAH7r6NGjat26dYP3W+x2u92L9cAFvnjF6NixY7rwwgv1/fffn/VEg/sw5t7HmJuDcfe+YBhzrhgFEIvF4rMnauvWrX22tkDFmHsfY24Oxt37gnnMmXwNAABgIBgBAAAYCEZwSXh4uKZMmaLw8HCzSwkajLn3MebmYNy9jzFn8jUAAIADV4wAAAAMBCMAAAADwQgAAMBAMAIAADAQjAAAAAwEI7iFzWbTkiVLdOedd6pr166KiopSdHS0+vfvrzlz5ujkyZNmlxiwPvvsM02cOFEZGRlq27atLBaLrr32WrPLChiffPKJhg8frpiYGEVGRmrAgAF64403zC4rYC1cuFD33Xef+vTpo/DwcFksFs2bN8/ssgLaDz/8oOeee05Dhw7VRRddpLCwMCUmJuqmm27S5s2bzS7P61gSBG6xd+9ejR49WlFRUbruuuv0X//1Xzp69KjefvttjRs3TitXrtS//vWvs65Pg+ZZtmyZnnrqKYWFhenSSy9VSUmJ2SUFjLVr1yojI0MtW7ZUdna2oqOjtWTJEmVlZen777/XH/7wB7NLDDiPPfaYvvvuOyUkJKhDhw767rvvzC4p4M2ePVszZ87UxRdfrKFDh6pt27bas2ePli1bpmXLlmnx4sXKysoyu0zvsQNu8H//93/2l156yV5aWuq0vbS01N6nTx+7JPsbb7xhUnWBbdeuXfatW7faKysr7fv377dLsg8cONDssvyezWazX3zxxfbw8HD79u3bHduPHDliv/TSS+1hYWH24uJi8woMUAUFBY5xfeqpp+yS7K+++qq5RQW4JUuW2NetW1dn+4YNG+xWq9UeGxtrP3HihAmVmYO30uAW559/vsaNG6fIyEin7ZGRkXrooYckSevXrzejtIDXrVs39erVS1ar1exSAkphYaH27t2rW265RWlpaY7tbdq00cSJE1VZWan58+ebV2CAGjx4sDp27Gh2GUHlxhtv1MCBA+tsv/rqqzVo0CAdPnxYO3fuNKEycxCM4HE1v7BDQ3nnFv5j3bp1kqShQ4fWuS8jI0MSYR+BLxhfvwlG8Li5c+dKqv8XDOCr9uzZI0nq1KlTnfsSExMVFRXleAwQiPbt26c1a9aoQ4cO6t69u9nleA3BCB71t7/9Te+++67S09M1fPhws8sBGu3o0aOSTr11Vp/WrVs7HgMEGpvNpttvv10VFRWaOXOmQkJCzC7Ja4Ln2hga5Q9/+IMqKioa/fjx48fX+xe1JK1YsUIPPPCAOnbsqIULF7qrxIDkznEHAFdUV1dr7Nix2rBhg+69917dfvvtZpfkVQQjOPnrX/+qsrKyRj9+9OjR9f6CXrlypUaPHq327dursLBQHTp0cGeZAcdd4w73qblS1NBVoWPHjik2NtabJQEeV11drbvuukuLFy/Wbbfdpr/85S9ml+R1BCM4KS0tdXkf77zzjm666SYlJCRo7dq1SklJcUNlgc0d4w73qgmee/bsUe/evZ3uO3DggEpLS9WvXz8zSgM8orq6Wjk5OXrttdf0m9/8RvPmzVOLFsE34yb4vmN4VE0oiouL09q1a3XJJZeYXRLQLDXty6tXr65z36pVq5weA/i72qEoKytLCxYsCKp5RbURjOA27777rm666SbFxsZq7dq1vNUDv3bdddcpJSVFixcv1meffebYfvToUU2fPl1hYWG64447zCsQcJOat89ee+01jRkzRgsXLgzaUCRJFrvdbje7CPi/3bt3Ky0tTRUVFcrOzlbnzp3rPCYpKUljx471fnEBbvfu3ZoxY4Yk6ZdfftEbb7yh9u3ba9iwYY7HsNZU8zS0JMh3332nWbNmsSSIB7zyyiv64IMPJEk7d+7Utm3bdOWVVzquPl911VW65557zCwx4OTl5Wnq1KmKiorS+PHj6/3MopEjRzp90GlAM/ujtxEY1q5da5d01n8sU+EZjRl7NN/mzZvtw4YNs7du3dreqlUre79+/ez5+flmlxWw7rzzzrOey3feeafZJQacc425gmxZFq4YAQAAGJhjBAAAYCAYAQAAGAhGAAAABoIRAACAgWAEAABgIBgBAAAYCEYAAAAGghEAAICBYAQAAGAgGAEAABgIRgAAAAaCEQAAgOH/A84TxAnK9ig1AAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"az.plot_forest(trace)\n",
"plt.grid()\n",
"plt.vlines(0, 0, ymax=100, color=\"red\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"None of them are except sigma and beta[19] which corresponds to the last variable \"Months\""
]
},
{
"cell_type": "code",
"execution_count": 277,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'num__Months'"
]
},
"execution_count": 277,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"column_names[19]"
]
},
{
"cell_type": "code",
"execution_count": 278,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"-74.127770174036"
]
},
"execution_count": 278,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"100 * (np.exp(-1.352) - 1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 4.2 Making predictions\n",
"How do we make predictions with this model ? Well, we can use the MCMC samples (beta) to compute the sigmoid probabilities on the test data:"
]
},
{
"cell_type": "code",
"execution_count": 279,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(4000, 20)"
]
},
"execution_count": 279,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"beta_samples = trace.posterior[\"betas\"].values.reshape(-1, 20)\n",
"beta_samples.shape"
]
},
{
"cell_type": "code",
"execution_count": 280,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(4000, 1)"
]
},
"execution_count": 280,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"intercept_samples = trace.posterior[\"intercept\"].values.reshape(-1, 1)\n",
"intercept_samples.shape"
]
},
{
"cell_type": "code",
"execution_count": 281,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"((140, 4000), (60, 4000))"
]
},
"execution_count": 281,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from scipy.special import expit as sigmoid\n",
"\n",
"def get_bayes_probas(X, trace):\n",
" beta_samples = trace.posterior[\"betas\"].values.reshape(-1, 20)\n",
" # vector of size 4000 x 20\n",
" intercept_samples = trace.posterior[\"intercept\"].values.reshape(1, -1)\n",
" # vector of size 4000 x 1\n",
"\n",
" # X test is of size n_samples x 20 so we transpose beta_samples to have a size 20 x 4000\n",
" # then we transpose the output to be 4000 x n_samples compatible with intercept_samples of size 1 x 4000\n",
" logits = X.dot(beta_samples.T) + intercept_samples\n",
" # we have a vector of size n_samples x 4000\n",
" return sigmoid(logits)\n",
"\n",
"probas_bayes_train = get_bayes_probas(X_train_processed, trace)\n",
"probas_bayes_test = get_bayes_probas(X_test_processed, trace)\n",
"\n",
"probas_bayes_train.shape, probas_bayes_test.shape\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We have 4000 different predictions for each of the 60 test samples, we can compute the average prediction and the standard deviation to evaluate our uncertainty:"
]
},
{
"cell_type": "code",
"execution_count": 282,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Training accuracy: 0.8071\n",
"Test accuracy: 0.6833\n"
]
}
],
"source": [
"mean_proba_bayes_train = probas_bayes_train.mean(axis=1)\n",
"std_proba_bayes_train = probas_bayes_train.std(axis=1)\n",
"\n",
"mean_proba_bayes_test = probas_bayes_test.mean(axis=1)\n",
"std_proba_bayes_test = probas_bayes_test.std(axis=1)\n",
"\n",
"bayes_predictions_train = (mean_proba_bayes_train > 0.5).astype(int)\n",
"bayes_predictions_test = (mean_proba_bayes_test > 0.5).astype(int)\n",
"\n",
"print(f\"Training accuracy: {accuracy_score(y_train, bayes_predictions_train):.4f}\")\n",
"print(f\"Test accuracy: {accuracy_score(y_test, bayes_predictions_test):.4f}\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It seems like the performance is similar or even a bit worse than the frequentist approach (Ridge). Why go through the trouble of MCMC then ? Well, because we can compute also uncertainties around those mean predictions of the MCMC samples. For example, with the frequentist approach we would get the the probability of churn is 0.8. With the bayesian approach we have 4000 probabilities of churn for each sample, assume their mean is identical: 0.8. With the 4000 MCMC samples we can also compute an HDI of those probabilities. If the HDI is too large say [0.3, 1.] then we cannot say for sure that 0.8 is statistically significant. If however the HDI is [0.7, 0.9] (it is far from 0.5) then we are more confident in our prediction.\n",
"\n",
"In practice, the companies does not want to have many false positives (predict churn for customers who are actually satisfied and won't leave) because it costs money (ads, promo deals to retain them...). So it might use the bayesian approach to only target the customers with predicted churn **and** high certainty. For the predicted churns with low certainty it may send them a satisfaction survey to be more certain. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5. How I manipulated the data\n",
"\n",
"To illustrate the regularization here I truncated data to only 200 samples (from 10K samples in the kaggle dataset) and kept only a few variables otherwise MCMC would be too slow. And I also added fake variables: the region variable is purely random, completely unrelated to the churn variable. Yet, the regression (and Lasso) found a large coefficient for one of the regions ! This is to illustrate how models with little data can learn noise and lead to wrong intepretations of the coefficients: L2 regularization (and the bayesian approach however correctly reduced their amplitudes). \n",
"\n",
"Let's remove the region variable and see what happens. Before, we obtained with the unregularized model using the Regions:\n",
"\n",
"- Training accuracy: 0.8357\n",
"- Test accuracy: 0.6500"
]
},
{
"cell_type": "code",
"execution_count": 243,
"metadata": {},
"outputs": [],
"source": [
"categorical_features = [\"Dependents\", \"TechSupport\", \"Contract\", \"InternetService\"]\n",
"numeric_features = [\"MonthlyCharges\", \"Months\"]\n",
"\n",
"categorical_transformer = OneHotEncoder(drop=\"first\", sparse_output=False)\n",
"numeric_transformer = StandardScaler()\n",
"\n",
"preprocessor = ColumnTransformer(\n",
" transformers=[\n",
" ('cat', categorical_transformer, categorical_features),\n",
" ('num', numeric_transformer, numeric_features),\n",
" ],\n",
")\n",
"\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42, stratify=y)\n",
"\n",
"X_train_processed = preprocessor.fit_transform(X_train)\n",
"\n",
"X_test_processed = preprocessor.transform(X_test)\n",
"\n",
"# we get the column names:\n",
"column_names = preprocessor.get_feature_names_out()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Training accuracy: 0.8214\n",
"Test accuracy: 0.6833\n"
]
}
],
"source": [
"# we can fit the logistic regression model with no regularization:\n",
"model = LogisticRegression(penalty=None)\n",
"model.fit(X_train_processed, y_train.values)\n",
"\n",
"y_train_pred = model.predict(X_train_processed)\n",
"y_test_pred = model.predict(X_test_processed)\n",
"\n",
"# Evaluate the model accuracy\n",
"print(f\"Training accuracy: {accuracy_score(y_train_pred, y_train):.4f}\")\n",
"print(f\"Test accuracy: {accuracy_score(y_test_pred, y_test):.4f}\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Slightly less train accuracy, more test accuracy: the model's overfitting is reduced a little bit."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}