Chapitre IV: Introduction to representation learning

Hicham Janati

hjanati@insea.ac.ma

.
waii

INSEA


mailto:hjanati@insea.ac.ma

Un opérateur téléphonique a les données historiques sur ses clients.

Dependents TechSupport Contract InternetService Months MonthlyCharges ‘
U U .C U
24 89.50

1 0 0 0 0
0 0 0 1 6 65.25 1
0 1 1 0 48 35.30 7
1 0 0 1 48 80.81 7

Churn = 1: client a annulé son abonnement

| ’entreprise souhaite anticiper le “churn” avec un algorithme de prédiction.
Si elle prédit que le client A va résilier son abonnement dans un mois, elle peut:

1. Le contacter pour essayer de comprendre sa situation et lui faire changer d’avis

2. Le cibler avec des offres de promotion

— .
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Dependents TechSupport Contract InternetService Months MonthlyCharges I
U U .C U
24 89.50

1 0 0 0 0
0 0 0 1 6 65.25 1
0 1 1 0 48 35.30 ?
1 0 0 1 48 85.81 ?
)& X? X X4 )& X Y
On modélise cette base de données par des variables aléatoires
On veut utiliser le vecteur aléatoire X = (X',...,X°) " pour prédire le 1/
On cherche une fonction [ : R® — {0,1} telle que: f(X) =
lci: Y & {O, 1} v.a discrete: Probleme de classification
En revanche, si on avait: 1/ - v.a continue: Probleme de régression
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Soit X un vecteur aléatoire dans R Soit 1y une variable aléatoire dans )

L’ensemble ) peut étre fini (ex. {0, 1} — classification) ou infini (ex. R — régression)

On cherche une fonction f : R? — V telle que: f(X) =y

On note 1’écart entre la prédiction f(X) et les vrais labels y par L(f(X), )

L est appelée: fonction de perte — loss function

Squared loss

Exemples: Absolute loss
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Soit F ’ensemble des fonctions R¢ — )

On veut une fonction f € F qui minimise la perte L( f(X), y)

Or X et y sont des variables aléatoires, on minimise alors:

Expected Risk Minimization
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(L(f(X),7))  Expected Risk Minimization

Que doit-on faire pour résoudre ce probleme ?

1. Prendre f dans un sous-ensemble H C F de dimension finie

2. Avoir des observations (X1,71),. .., (Xn,yn) ~ P(X,Y)

3. Minimiser le risque empirique minyey = > . (L(f(x4), v4))
avec un algorithme d’optimisation

1. Modélisation 2. Approximation statistique 3. Optimisation numérique
Comment choisir H 7 Les observations sont-elles i.i.d 7 La solution existe 7 est unique 7
Comment choisir £ ? n est-il assez grand 7 Quel algorithme d’optimisation 7

=
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‘Apprentissage supenvisé | Comment choisir H 7

1. Modélisation Comment choisir H 7

Dependents TechSupport Contract InternetService Months MonthlyCharges ‘
U U ).0¢ U
24 89.50

1 0 0 0 0
0 0 0 1 6 65.25 1
0 1 1 0 48 35.30 7
1 0 0 1 48 80.81 7

Churn = 1: client a annulé son abonnement

| ’entreprise souhaite anticiper le “churn” avec un algorithme de prédiction.

La fonction de prédiction f doit donner 1 ou 0, on considere alors des fonctions de type:

f(X) — ]lg(x)z()

On ne peut pas chercher g dans la totalité de I’espace des fonctions (dimension infinie), il
= faut paramétriser g
=
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On considere une seule variable “x = Months” qui donne la durée du contrat:

0.04 -

0.02 -

—0.02 ~

—0.04 ~

:
b

1
0

i
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i

T T T T T T T
0 10 20 30 40 50 60

Months
Fonction de prédiction: f(X) — ]lg(x)z()

70

Proposer une fonction g simple telle que f distingue au mieux les labels en moyenne

Parex: ¢(x) = —x+ 30

F(x) = 1(g(x) > 0) = 1(—x + 30 > 0) = 1(x < 30)

On peut par exemple considérer la famille des fonctions linéaires: g(x)

On dit que g est paramétrée par 5 = (8o, 31)"

8
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On considere une seule variable “x = Months” qui donne la durée du contrat:

0.04 - o—Y—=-1
0.02 ® Y=0
0.00 - CUSTISe S ES SO0 SR SSEESISrt @ 0 SEEET S80S ST@ S B GS® SEISSEES® S
—~0.02 1
—0.04 -
0 10 20 30 40 50 60 70
Months

AinSiv H = {f P X = ]l(ﬁlx_l_ﬁ() > 0)760761 = R}

Chercher la meilleure f = chercher le meilleur 3:

min — L(1g5 ;
GER? M Z {B1x;+B0>0}5 Yi )
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On considere une deux variables: “Months” et “MonthlyCharges”: X = (Xl, X2) f(X) — ]lg(x)zo
Quelle serait la fonction paramétrée g la plus simple ici ?

& g o © . e Y=0
" o %o o o o Y=1 1 2
o | o .3 oo, o %42 .f I g(X):O‘_I_ﬂlX + O2x”, «a,p1,02 €R
5 60 °*— 28 *eal o o
A o(x)=a+{5x), acRHCR’
= 40 o) o 0o © e ‘.. ® ° o
S 0.‘ g...'o.{': * g(X) — o + /BTX, o & R, /6 - Rz
= 20 ® % .o.)‘. ...0: o
i R 8® *° :’!,. n

og oo ° ®

0 - . ' ' min E L(1 T, '
0 20 . Month450 60 OéER,ﬁéRQ . ( {Ot B XzZD}??/Z)

A quoi ressemble I’ensemble des fonctions g graphiquement ?

On consideére ¢ : x — (' x. Etudions ses courbes de niveaux, c-a-d pour ¢ € R les ensembles: {x|g(x) = c}.

=
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On considere ¢ : x — 3 x. Etudions ses courbes de niveaux, c-a-d pour ¢ € R les ensembles: {x|g(x) = c}.

Exemple avec 8 = (1,0.5)" et ¢ = 0.

Quels sont les x tels que 8'x =0 7

Tous les vecteurs orthogonaux a (.

[x € R?|3"x = 0} est la droite perpendiculaire & 3.

R -1.0 -0.5 0.0 0.5 1.0 1.5
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On considere ¢ : x — 3 x. Etudions ses courbes de niveaux, c-a-d pour ¢ € R les ensembles: {x|g(x) = c}.

15
g(x) >0

1.0 | Exemple avec 8 = (1,0.5)" et ¢ = 0.

0.5 Quels sont les x tels que 3'x =07

0.0 Tous les vecteurs orthogonaux a (.
~0.5 [x € R?|3"x = 0} est la droite perpendiculaire & 3.
-1.0 D) a droite de (D), B'x >0
e T P PO R Py a gauche de (D), 5TX < 0

etsic=17o0ouc=-—-17
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On considere ¢ : x — 3 x. Etudions ses courbes de niveaux, c-a-d pour ¢ € R les ensembles: {x|g(x) = c}.

INSEA

1.5 . 5
B 4 g(x) >0

. S _ T _

. @@\‘ 3 Exemple avec = (1,0.5)" et ¢ = 0.

0.5 Quels sont les x tels que B'x =0 7?

0.0 Tous les vecteurs orthogonaux a (.

N
—-0.5 (f« : 29 nT : . : .
3 ~/\\ g\ {x € R*|'x = 0} est la droite perpendiculaire a 5.
' MR

-1, 0 “

1 g(x) <0 y (D)“ a droite de (D), 8'x >0
i R R T R Y Y a gauche de (D), BTX <0

etsic=17o0ouc=-—-17
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Comment change la fonction de prédiction f : 1,4 37x>01 en fonction de v et 5 7
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o = 0, (B varie: o varie, § = [1,1]:

Comment change la fonction de prédiction f : 1,4 37x>01 en fonction de v et 5 7




n
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aeﬁéﬂ@; (L {575,505 i)

® Class0
® Class1

x> (charges)

X1 (months)
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Et si on utilise trois variables:

10.0

—7.5

—-10.0
-10.0-7.5 -5.0 =25 0.0 2.5 5.0 7.5
X2

g(x) = a + B1x' + Box” + [B3x°
g(x) =+ x

Que forment les x tels que {g(x) = 0}7

En dimensiond: g¢(x)=a+8'x, BeR?

Que forment les x tels que {g(x) = 0}?

Un espace de dimension d-1: un hyperplan

17



Supposons on a deux observations xi,Xs avec le vrai label y1 = y5 = 1 et:

o+ B'x; =140.23 a+ f['x9 =0.1

Quelle est la loss associée L(f(x;), ;) a chacune de ces prédictions ?

Les prédictions sont données par f(x;) = L(a+ 8'x; >0) =1

La prédiction est correcte: la loss est 0 dans les deux cas !

Or on almerait un modele ou la prédiction de x; est plus confiante que x5

Idée: transformer le score o + 3' x; en une probabilité

a+B'x; =1044.2 =  P(y; = 1|x;) = 0.999
o+ ['x; =024 =  P(y; = 1]x;) = 0.51
a+fx;=-9465 = P(y; = 1|x;) = 0.001
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. : : SO exp(t)
On peut utiliser la fonction sigmoid: o : ¢ — 1= oxp (D)
o(4+00) =1
g(—o0) =0
1
o(0) = =
0)=;

-6 —4 —2 0 2 4 6

Et on modélise les probabilités: P(y; = 1|x;) = o(a + 5TX7L)

Au lieu d’avoir des prédictions binaires uniquement, nous avons des probabilités p; = o(a + 8 ' x;)

=
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On veut comparer les p; et les y; avec une loss £. Comment doit-elle se comporter selon les cas suivants:

@ pi &1 = Perte L(p;,y;) = 0O

yi =1 et
b) pi =0 = Perte L(p;,y;) — +00
Quelle fonction L(p;, 1) vérifie cela ? — log(p;)

Quelle fonction L(p;,0) vérifie cela ?

Comment peut-on unifier les deux et définir L(p;, ;) ?

L(pi,yi) = —yilog(p:) — (1 — yq) log(1 — p;) Cross-entropy loss

INSEA 20 ﬂ




ot 1Je:;§g()t) pi=o(a+6'%x;)  Lpi,yi) = —vyilog(p;) — (1 — ;) log(1 — p;)

sigmoid / logistic
function

Optimisation numérique

Oé*, /B*
Cette optimisation est I’étape d’apprentissage ou d’entrainement

“learning” / “training” / “data fitting”

Modele de régression logistique
INSEA 21 ﬂ




‘Apprentissage supervisé ]| Model evaluatior

Optimisation faite sur (x1,41),...,(Xn, Un)

“Training” data

— “Training” —— “Learned” f* —

INSEA

predictions true labels
= J1 f7(x1)

[ (%n)

—

Yi

Yn

La train error est optimisee: on a littéralement

cherché la meilleure fonction telle que

f(xi) = v

Il faut évaluer la performance du modele sur des données
nouvelles non vues a I'’entrainement: “Test data”

22

predictions true labels

f(x1) Y1

Comment evaluer
ces predictions ?

~ S () # )

“Train” error

— “Test” error

n}



Et si les données ressemblent a ceci ?

Aucune fonction linéaire ne peut séparer les classes

ldée: “combiner” plusieurs fonctions lineaires

70 A
60 -
50 -
40 -
30 - 1. Prendre des x dans R? et étudier les signes possibles de z1, 5.

20 1 2. Comment peut-on prédire Y = 1 a partir des z; 7

10 -
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Surfaces des hyperplans z7, 29 Surface de max(z1, 29)

4 N ) 1.00 . ' —1.00
10.0 10.0 7

- 0.75 | 0.75

- 0.50 - 0.50

- 0.25 - 0.25

- 0.00 X 00 - 0.00
- -0.25 25T - —0.25
- 050 -5.07 —-0.50
- 0.75 -7.5 —0.75
1.00 -1':'.0'L\ i ' - - B - —
T ' ' | ) e , ® 1.00
-4 5 \K\ .‘//)\
n \\ J\/
2 \’-;\ - < x
X 2 = 4
4 6

Prédire Y = 1 si 'un des z; est positif < max(zq1,22) > 0

fap(x) =1 {max(xT B +a1,xT B%+a)>0} Linear functions

Comment entralner ce modele, c-a-d optimiser o +

def : :
D; = ]P)a,g(y — 1‘Xz) — &gmmd(ma@—l— 1, XzT/BZ —+ 042))

_Non-linearity

n
— Comme la régression logistique: aeIIRE,ﬂﬁIéRd — ; yilog(pi) + (1 — y;) log(1 — p;)
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Intro to neural nets

Comment adapter ce modele a des données plus complexes ?

Linéarités

def
21 = XTﬁl + 0

def \ non-linéarité
29 = x' 32+ ay

T max(21,...,2p)

def T l
<p — X BP + Up sigmoid

1.00

- C.75

€50

- 0.25

YN P - 0.00

_4. 1 - —0.25

~104 {\ H\f J\ - —0.50
1.50 Y

-1.0 —11 '\l\ L _0.75
0.5 \ }

% 0.0 —\| \ e 100
“o.5|
1.0 , \ \ :

1.0 0.5 0.0 0.5 1.0
x1
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Intro to neural nets

Comment adapter ce modele a des données plus complexes ?

Linéarités

def
- 21 = XTﬁl + 0

def \ non-linéarité
| 290 = x' 3% + s
*‘ . T max(21,..., 2Zp)

sigmoid

1.00

DTS

- 0.50 1.00

0.75

- 0.50

0,25

- 0.00

- —0.25

- —0.50

-0.75

éﬁ. 1.00
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Linéarités
det
<1 — XT,Bl (X1

\ non-linéarité

T max(zl, Cee Zp) — sigmoid

En pratique, ce modele ne fonctionne pas pour ces données complexes. Pourquoi a votre avis ?

1. On n’utilise qu’une seule non-linéarité

2. Elle est fixée par la fonction max: on ne I’'apprend pas

Il faudrait donc: utiliser plusieurs non-linéarités simples + les combiner pour apprendre des fonctions non-linéaires complexes

Z A def
Id1€eA liquer plus linéarités h plus t¢ = h(x B8 4 ) RS
. Appliquer plusieurs non-linéarités h plus tot - o
: w] Zj W
o . o y o . N o o d f .
2. Combiner les z; linéairement avec w,; a optimiser 2 le h(XT 3P + Oép) /' j=1 l

sigmoid ﬂ
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Z1 = h(XT,Bl -+ 041) h(.ilj‘) — max(x,())

10 -

p
. Slngld(Z ijj —+ w()) — Singid(sz —+ w()) .
2 = hix'BP + a,) e =

Quelle est la fonction non-linéaire h la plus simple possible ? g

-100 =75 =50 =25 00 2.5 5.0 7.5 10.C

, . s RelLU: Rectified Linear Unit
On represente ce type de modele sous forme de graphe avec des “unites

de calcul simples: fonction linéaire + non-linearité. Unité = un neurone:

def
51 oll— ~1 = h(x' B + 1) \

,
o . . . T
. 2 = h(x' B + ;) L WP, wg — sigmoid(z ' w + wo)

X o

\ Output layer
’ o — < — h X p _I_ 8 - - ,
‘ Input layer 5 | ’ ( B p) Reseau de neurones a une couche cachee

INSEA Hidden layer 28
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‘Apprentissage supenvisé [ neural nets

On peut augmenter la complexité du modele a I'infini...

def

.2z = h(x"8Y+ oy

@ o ﬁ" v1 E h(cT AL + )

\
dif h(x' 37 + a;) ‘\

d ‘ def

x € R — v = h(c T)\k—|—,uk
\ /'

Input layer Hidden layer 1 Hidden layer2 ...  Hidden layer L Output layer

La dimension de chaque couche = le nombre de neurones

> P > m > k > 1

La profondeur du réseau = le nombre de layers

“Deep learning” = beaucoup de layers

la non-linearité h est appelée: fonction d’activation
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‘Apprentissage supenvisé [ neural nets

On peut augmenter la complexité du modele a I'infini...

def 1 1

o B o) T~ (s
617041 : ( ) ! T~ - )\17#1 — U1 déf h(CT)\l -+ ,LL1)
. \ wpaw()
. 2 = h(xT B9 + ay) | /
X & Rd\ . N — g e hic' AP+ 1) l

: : T
8P P def sigmoid(v ' w + wy)
_ ., zp = h(x"BP +ay)

Input layer Hidden layer 1 Hidden layer2 ...  Hidden layer L Output layer

Deep neural networks = many layers / many neurons

o | bias
h appliquée element-wise (numpy style) ﬂ
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‘Apprentissage supervisé ] Training nevral nets

® " h(Wlx + bl) — 21— h(WLZL—l - bL) — z1, € RF — sigmoid(w; 121 + br11)
Input layer Hidden layer 1 Hidden layer L Output layer
S —
def
X1 % pi = [(xi) €[0,1]

Avec un dataset

X.n yn On modélise P(y; = 1|x;) = f(X;)

Comme avec la régression logistique, on “apprend” les parametres en minimisant la cross-entropy loss:

Wi,. Wri1 N

b17°°°7bL—|—1

On suppose que les 1; € R (Probleme de régression) comment doit-on modifier le modele ?
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Jusqgu’a présent nous avons considére la classification binaire uniguement: deux classes (0 / 1)

en modélisant P(y; = 1|x;) = f(x;)

Nous avons deéfini f telle que son output soit dans [0, 1]

Pour prédire la classe de x;, il faut calculer la probabilité de chaque classe: p; r = P(y; = k|x;)

i Pi,0 _
Ainsi, il faut avoir un vecteur de probabilités p; = ;

. 1 Pi, K—1_
avec la contrainte ) ;_, pir =1

Comment peut-on modifier 'output layer tel que f(x) soit un vecteur dans [0, 1]* sommant & 1 ?
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Multi-class neural nets

Pour que f(x) soit un vecteur de dimension K, il faut avoir K neurones dans la derniére couche:

X b ¢ Wiy € REXS
> oo h(Wpzp_1+bp) =2 e R" — Wrii1zrp +bry1 = 2141
| brii € R®
Input layer Hidden layer L Output layer T
K K .. .
Comment peut-on transformer un vecteur z € R™ — [0, 1|7 tel qu’il somme a1 ?
EZ exp(z1) B C—Rlz) T
Hof Pour que u somme a 1, il <1 S exp(zk)
: e , K . .
—S 11 = ) c R suffit de diviser par la . def , K
' + somme des exponentielles: ) = U = ) S [O, 1]
LK _eXp(ZK)_ 25 exp(z k)
= = _xf_l exp(zi) -

la fonction softmax

X > o o o h(WLZL—l -+ bL) — ZJ, & RE — SOftmaX(WL_HZL + bL—|—1)

= Input layer Hidden layer L Output layer
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X > e o o h(WLZL—l —+ bL) — ZJ, & Rﬁ — SOftmaX(WL+1ZL + bL—l—l)

Input layer Hidden layer L

On veut que f(x;) corresponde au vecteur des probabilités

Output layer

Pi —

P(y; = 0|x;)

Pour comparer les p; aux y;, on transforme les labels en vecteurs de probabilités:

y=0=y=1[1,0,...,0]"

y=1=vy=10,1,...,0"
y=K-1=y=10,0,...,1]"

Vecteurs “one-hot”
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On suppose que les poids sont optimisés et que le modele a une excellente performance sur des données de test

. . *
&gmmd(u’ygﬂzL + br,11)

* * *
X  h(Wix4Dby) = 2g — - — h(Wizi_1+by) — 2z € RC — ou
softmaX(WtHzL +b’§+1)

Input layer Hidden layer 1 Hidden layer L
Output layer

9

On définit la transformation g des données en s’arrétant a au dernier hidden layer: ¢ : RY — R ¢ < d

Plus facile: car une simple régression logistique (output layer) a suffi pour les classifier: ils sont forcément linéairement séparables

g(x;) est donc un excellent embedding (représentation vectorielle) de x;

| ’output layer est souvent appelé “classification head”

— .
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