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TD 3

On admet le résultat suivant, 'une des conséquences les plus importantes de la SVD :

,—(Théoréme d’Eckart—Young} <

Soit A € R™*?. La norme de Frobenius de A est définie par [|A||% = 37, ; A7 Soit E, I'ensemble
des matrices B € R™ telles que rang(B) < r < min(d,n). On écrit la décomposition SVD de

in(n.d . . . ) .
A = Z?:f(" )aiuiviT ,oll 01 > 09 > .... Alors la meilleure approximation de rang maximal r de
A définie par
win || — B2
BeE,

est donnée par :
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Exercice 1 (Lemme : Décomposition matricielle)
Soit A € S; une matrice symétrique semi-définie positive de taille d. On suppose que son rang est égal
a r. Montrez qu’il existe Z € R¥" telle que :

A=77"

Exercice 2 (Classical MDS)

Soit X € R™*? une matrice des données en dimension d d’un vecteur aléatoire centré. Classical MDS
cherche la meilleure représentation en dimension ¢ < d (Z € R"*?) qui préservent les produits scalaires
(x;,x;). Ainsi on cherche a résoudre :

n

min g (x/x; — 2] ;)
z1,...,Zn ERY

Z7j

1. Comment peut-on écrire le probleme d’optimisation ci-dessus en fonction des matrices X et Z et
de la norme de Frobenius ?

2. Montrez que le probleme Classical MDS est équivalent a une approximation de faible rang et en
déduire que la solution est donnée par les ¢ premiers vecteurs propres de la matrice XX multipliés
par des scalaires a déterminer.

3. En effectuant une SVD de X, déterminez les valeurs propres et les vecteurs propres de XX ' et
X "X en fonction des éléments de la SVD de X.

4. En déduire que les projetés z; sont les mémes que les projetés PCA,(x;).

Exercice 3 (Classical MDS : double centering)
Soit X € R™? une matrice des données en dimension d d'un vecteur aléatoire centré, on suppose donc

que la moyenne empirique est nulle. On suppose que l'on a pas acces a la matrice X ni aux produits

. . . . < 1- , . def
scalaires (x;,X;). Mais on a la matrice des distances Euclidiennes D;; = ||x;—x;||>. On définit A = XX T.
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Ecrivez d;; en fonction de A;;, Ay et Ajj.

Calculez » 1" | dij et 7 dij et 375 dij en fonction de Ajj, Ay et trace(A).
En déduire A;; en fonction des termes de D.

Montrez que A = —%HDH ou H=1, — %]ln]ll.

On appelle H une matrice de centrage. Pourquoi ?

A

6. En déduire un algorithme Classical MDS a appliquer sur une matrice des distances D € R™*".

Exercice 4 (Analyse de données)
On observe 200 observations en deux dimensions. On applique la PCA et Isomap avec 10 voisins en
deux dimensions dans le but d’essayer d’isoler les deux clusters a part et de pouvoir les séparer avec une

droite.
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1. La PCA semble avoir échangé les deux variables. Expliquez pourquoi.
2. La PCA n’a pas réussi a séparer les deux clusters. Qu’en est-il de Classical MDS ?
3. Et si on utilisait MDS avec les distances Euclidiennes ?
4. Expliquez la capacité d’Isomap a rassembler les deux classes.
Exercice 5 (Prédiction simple)
On observe n observations en deux dimensions données par la matrice X € R™*2 pour lesquels on a des

labels binaires v, ..., vy,. On observe également 3 échantillons “Xi.t” pour lesquels on n’a pas acces
) )
aux labels. Voici la visualisation entiere de ces données.
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1. Si on tranforme ces données avec une PCA avec deux composantes, la représentation des données
serait-elle différente des données d’origine ? Justifiez votre réponse.

2. On souhaite utiliser les données labélisées pour prédire les labels des 3 observations de test. En
se basant sur la figure ci-dessus, déterminez les labels des trois échantillons de gauche a droite en
utilisant le modele k-Nearest-Neighbors avec k =1et k=2 et k =n.

3. A quoi correspond la fonction de prédiction k-NN ¢ : x e R? —y € {0,1} si k=n?



