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TD 3
On admet le résultat suivant, l’une des conséquences les plus importantes de la SVD :

Théorème d’Eckart-Young

Soit A ∈ Rn×d. La norme de Frobenius de A est définie par ‖A‖2F =
∑

i,j A
2
ij. Soit Er l’ensemble

des matrices B ∈ Rn×d telles que rang(B) ≤ r ≤ min(d, n). On écrit la décomposition SVD de

A =
∑min(n,d)

i=1 σiuiv
>
i , où σ1 ≥ σ2 ≥ .... Alors la meilleure approximation de rang maximal r de

A définie par
min
B∈Er

‖A−B‖2F

est donnée par :

B? =
r∑

i=1

σiuiv
>
i

Exercice 1 (Lemme : Décomposition matricielle)
Soit A ∈ Sd une matrice symétrique semi-définie positive de taille d. On suppose que son rang est égal
à r. Montrez qu’il existe Z ∈ Rd×r telle que :

A = ZZ>

.

Exercice 2 (Classical MDS)
Soit X ∈ Rn×d une matrice des données en dimension d d’un vecteur aléatoire centré. Classical MDS
cherche la meilleure représentation en dimension q < d (Z ∈ Rn×q) qui préservent les produits scalaires
〈xi,xj〉. Ainsi on cherche à résoudre :

min
z1,...,zn∈Rq

n∑
i,j

(x>i xj − z>i zj)
2

1. Comment peut-on écrire le problème d’optimisation ci-dessus en fonction des matrices X et Z et
de la norme de Frobenius ?

2. Montrez que le problème Classical MDS est équivalent à une approximation de faible rang et en
déduire que la solution est donnée par les q premiers vecteurs propres de la matrice XX> multipliés
par des scalaires à déterminer.

3. En effectuant une SVD de X, déterminez les valeurs propres et les vecteurs propres de XX> et
X>X en fonction des éléments de la SVD de X.

4. En déduire que les projetés zi sont les mêmes que les projetés PCAq(xi).

Exercice 3 (Classical MDS : double centering)
Soit X ∈ Rn×d une matrice des données en dimension d d’un vecteur aléatoire centré, on suppose donc
que la moyenne empirique est nulle. On suppose que l’on a pas accès à la matrice X ni aux produits

scalaires 〈xi,xj〉. Mais on a la matrice des distances Euclidiennes Dij = ‖xi−xj‖2. On définit A
def
= XX>.
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1. Écrivez dij en fonction de Aij, Aii et Ajj.

2. Calculez
∑n

i=1 dij et
∑n

j=1 dij et
∑n

i,j dij en fonction de Ajj, Aii et trace(A).

3. En déduire Aij en fonction des termes de D.

4. Montrez que A = −1
2
HDH où H = In − 1

n
1n1

>
n .

5. On appelle H une matrice de centrage. Pourquoi ?

6. En déduire un algorithme Classical MDS à appliquer sur une matrice des distances D ∈ Rn×n.

Exercice 4 (Analyse de données)
On observe 200 observations en deux dimensions. On applique la PCA et Isomap avec 10 voisins en
deux dimensions dans le but d’essayer d’isoler les deux clusters à part et de pouvoir les séparer avec une
droite.
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1. La PCA semble avoir échangé les deux variables. Expliquez pourquoi.

2. La PCA n’a pas réussi à séparer les deux clusters. Qu’en est-il de Classical MDS ?

3. Et si on utilisait MDS avec les distances Euclidiennes ?

4. Expliquez la capacité d’Isomap a rassembler les deux classes.

Exercice 5 (Prédiction simple)
On observe n observations en deux dimensions données par la matrice X ∈ Rn×2 pour lesquels on a des
labels binaires y1, . . . , yn. On observe également 3 échantillons “Xtest” pour lesquels on n’a pas accès
aux labels. Voici la visualisation entière de ces données.
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1. Si on tranforme ces données avec une PCA avec deux composantes, la représentation des données
serait-elle différente des données d’origine ? Justifiez votre réponse.

2. On souhaite utiliser les données labélisées pour prédire les labels des 3 observations de test. En
se basant sur la figure ci-dessus, déterminez les labels des trois échantillons de gauche à droite en
utilisant le modèle k-Nearest-Neighbors avec k = 1 et k = 2 et k = n.

3. À quoi correspond la fonction de prédiction k-NN ϕ : x ∈ R2 7→ y ∈ {0, 1} si k = n ?
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