Teaching
École Polytechnique
Master Data Science For Business (X/HEC)
- Python for data science (2021)
Hands on programming lectures where students learn by doing. Teaching style from the tried and tested software carpentry project.
Master data science (X/Télécom Paris/ENSAE)
- Statistical learning theory (2022, 2023)
Mathematical foundations for supervised learning
- Optimization for machine learning (2023)
General overview of optimization in data science: convex, non-convex, smooth and non smooth machine learning models. Theoretical study and practical Python implementation of optimization solvers.
Télécom Paris
Cycle ingénieur (4ème année)
- Advanced Statistics (2022, 2023)
Theoretical course on non-parametric models
- Numerical calculus and Monte-Carlo methods (2022, 2023)
Approximation theory and simulation algorithms
Master spécialisé Big Data AI
- Advanced machine learning (2022, 2023)
Lectures on optimal transport, semi-supervised and self-supervised learning.
Télécom Executive Education
- Introduction to Machine learning (2022, 2023)
Dense 2-day program for executives with little to no previous background in AI.
ENSAE / Sorbonne Université [Teaching assistant during PhD]
- Optimisation différentiable (2017-2020) - ENSAE 1A
- Probability theory (2018) - ENSAE 1A
- Monte-Carlo methods (2017-2020) - ENSAE 2A
- Programmation en C - La Sorbonne Université (2017)